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frequency f0 of a signal at a given time. However, the Yin algorithm
produces errors in a noisy context.

We use the aperiodicity measure ap(t) given by the yin to vali-
date the fundamental frequency found. The most noisy parts of the
signal are maintained, because in this cases the yin is not enough
reliable to determine f0. We fix an aperiodicity threshold Tap = 0.6
to suppress candidate in frames at time t where:

f0(t) < Tlowf & ap(t) > Tap (6)

3.1.3. Attack localization

This step aims to determinate the attack time for each water drop
candidate. We suppose this time is localized before the candidate.
The attack time is allocated to the local minimum energy bin be-
tween the candidate and 100 ms before the candidate. If the retrieved
time for the minimum is the same that the candidate time, we con-
sider there is no attack and remove the candidate.

3.2. Decision on a time frequency zone

In the first step, we selected candidates on a filter bank. Now, we
consider the full spectrogram, and we are going to validate the can-
didates in larger time-frequency zones.

3.2.1. Water drop zone selection

The damping factor d depend only of the frequency of the water
drop, as we see in Equations 2 and 3. To determine a time zone, we
look for a time t where:

|asin(2πft)e−dt| < � (7)

which is true if: t > ln(�/a)
d .

By fixing a threshold � expressed in decibel, and supposing a = 1,
we are able to determine a time zone in function of the frequency of
the candidate.

Moreover, for each candidate, we fix the frequency range at
500 Hz around the candidate. Thus, we consider a rectagular zone
around the candidate found.

3.2.2. Water drop validation

We define a zone before (Pre-zone) and a zone after (Post-zone) the
selected water drop zone. By considering the discrete aspect of water
drops, there should be less energy in these zones than in the water
drop zone. The Pre-zone and Post-zone have the same size of the
water drop zone. We validate the water drop candidate if

EPre−zone < 0.5 ∗ Ewaterdrop−zone (8)
&

EPost−zone < 0.8 ∗ Ewaterdrop−zone (9)
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Fig. 3. Time frequency water drop zone.

As the water drop length is estimation and depend on several
factors like the recording conditions, we use a weaker condition for
the Post-zone. Finally, we removed all other candidates found in a
validate water drop zone.

3.3. Post-treatment

We apply a smoothing at the end of the process to suppress isolate
water drops. We consider a sliding window of duration st. We re-
moved water drops when their number in the window is always in-
ferior at sn.

4. DEVELOPMENT

We made a development corpus by selecting two excerpts of 5 sec-
onds each from the IMMED corpus [7]. One of them is composed of
water drop sounds resulting of a do the dishes activity. The second
one is an excerpt of speech. We added 20 sounds download from
the Freesound Project [26]. 15 of them are water sounds as dripping
water, splash in a swimming pool, tap water, river, or boiling wa-
ter. 5 others are various home environmental sounds as alarm clock,
doorbell, door-opens-and-shuts.

All this files are converting in Wave format at 16 bits and 16 kHz
sampling rate. We fixed our thresholds on this development corpus
and we obtained:

Tcandidate = 0.15, � = −15dB, st = 2.5s and sn = 5.

(a) do the dishes activity (b) speech

(c) dripping tap (d) door open and close

(e) tap water (f) alarm-clock

Fig. 4. Recognition on various excerpts.

We can see on Figure 4 results on our system before the post-
processing step. Figure 4-a and 4-b show three seconds excerpts on
our IMMED corpus. We can see that water drops are well detected.
Through to the non-harmonic filtering, the speech excerpt does
not show candidates. The 4 others files come from the Freesound
Project. An isolated false alarm, due to an high pitched harmonic
sound is visible on Figure 4-d. The post-processing step is then
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that, we refine the borders of the detected events. Around each event
detected, we use the spectral cover values to enlarge the event until
the values are greater than a third threshold T3.

4. EXPERIMENTS

4.1. Corpus description

Our corpus is provided by the IMMED project: 10 videos of pa-
tients making activities of daily living in their own personal place of
residence, with a camera (HD GoPro Fisheye) fixed on their shoul-
der. The videos are made in the presence of a psychologist who
specifies a scenario of activities to realize. The recordings are from
twenty minutes to two hours of duration. After extracting the audio
part from the video, the audio sample rate is 12kHz . The listen-
ing reveals lots of environment noises, like opening and closing of
doors, footsteps, crookery chocks, and rubbing on the recording de-
vice. Furthermore, some particular sounds like water flow or ring
phone give us obvious clues on the patient activity. Nevertheless, as
the patient and the psychologist are in constant discussion, and due
to the position of the microphone, speech is very present and can be
loud in comparison to others sounds.

We annotated manually the videos in water flow and vacuum
cleaner events. We consider as water flow event each sound part
containing at least one of the two sound events: the ”fissing” sound
created by the faucet, and the ”splash” sound created by water im-
pacts and bubbles.

The training set, one recording of 39 minutes, contains 13 water
flow events of a total duration of 3 minutes and 2 vacuum cleaner
sounds of a total duration of 1 minute 30 seconds. The test set is
made up of nine different recordings, has a duration of 4 hours 09
minutes, and contains 22 water flow sound events of a total duration
of 11 minutes and 4 vacuum cleaner events for a total duration of 12
minutes.

4.2. Results

The training set allow us to determine the threshold value: T1 =
30000, T2 = 80000, T3 = 21000, and the parameter of the spec-
tral cover γ = 1.5 . γ is fixed in this study, some variation shows
interesting results depending on the sound event to detect.

The results are evaluated by 3 classical metrics: Precision, Re-
call, and F-measure. The vacuum cleaner results are very good, with
a F-measure of 99%. The results of our system are presented in the
table 1. Among the missed events, some of them are not clearly au-
dible or too short. Other events which have been missed are only
composed by little splash of water without a clearly audible fiss-
ing water flow sound. This kind of sound is not recognized by the
system. The detailed analysis of the system output reveals 22 false
alarms. They are mainly due to the presence of speech and noises.
Among them: speech overlaps (7 errors, 6 in the same file), manip-
ulation noises like plastic bag or crookery (6 errors), television (3
errors), laughers (4 errors), manipulation of the camera (2 errors).

4.3. Comparison with MFFC & LLD in a GMM

We propose in this section a comparative experiment between our
system and a classical approach. This approach is based on a
GMM classifier, and three different sets of features have been tested:
MFCC, Low Level Descriptors (LLD), and LLD with our spectral
cover (LLD+SC). MFCC and LLD are computed with the Yaafe
audio extractor [16]. MFCC are composed of 24 coefficients rep-
resenting spectrum between 20Hz and 6kHz. To obtain performing

Table 1. Comparatives results
System GMM

MFCC LLD LLD+SC
Precision 0.68 0.59 0.33 0.35
Recall 0.76 0.58 0.85 0.71
F-measure 0.72 0.58 0.38 0.47

LLD, a lot of feature combinations have been tested. Among them,
the best results are obtained with energy, spectral flatness per band
and spectral shape statistics (including centroı̈d, skewness, and kur-
tosis). The best recognition result is obtained with a GMM of 8
Gaussians. The same smoothing part as in our system is used for
this classical approach, and we remove sounds events smaller than
three seconds.

Results are presented in the table 1. The results obtain with the
GMM approach are not very good. We assume that the data are too
heterogeneous to be modelized with the learning set. As we can see,
MFCC gives better results than LLD, and confirm some previous
studies [8]. Nevertheless, we note that the recall of LLD is quite
important. Adding spectral cover to LLD improve the performance:
this confirms the interest of our feature.

In comparison to this classical approachs, our system presents
very good performances. The computational cost of our system is
also much less important than the one of a GMM approach.

4.4. Fusion

A late fusion has been tested with the two best systems (our system
and the MFCC-GMM). Different weights have been applied, with or
without smoothing. The results are similar than those of our system
alone, so we assume that there is not significant events which are
only recognized by the MFCC-GMM.

5. CONCLUSION

Is this paper, we presented a new audio feature, the spectral cover,
which can be used to detect audio events in a noisy environment. A
system based on an original feature was built to detect water flow
and vacuum cleaner sounds. This system was tested on a corpus
made up by recordings in real life situation. The results are very
encouraging compared with a classical machine learning approach.
Furthermore, we noticed that the spectral cover is also suitable to de-
tect other sound events. This allow us to imagine other applications.
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Figure 1: Representation of the Gaver taxonomy.

ticular sample analysed, rain could belong to Drip, if individual
raindrops were clearly identifyable, or to Pour, if the temporal fine
structure was undiscernible and the signal closer to noise. Also, if
the sound clearly indicated water falling down on a surface, as in
the case of rain tapping on a window, the sample was considered
to be a hybrid event and discarded, but if the rain contact with the
surface was faint, we included it in the Liquids category, and it still
needed to be categorized into either Drip or Pour.

3.3. Audio Features

One important question in the discrimination of general auditory
events is how much of our ability comes from extracting prop-
erties of the instantaneous spectrum, and how much results from
following the temporal evolution of the sound. A traditional hy-
pothesis in the field of ecological acoustics was formulated by
Vanderveer, stating that interactions are perceived in the tempo-
ral domain, while objects determine the frequency domain (quoted
in [3]). In several fields involved with discrimination of audio data
it has been common to use the bag of frames approach, meaning
that the order of frames in a sound is ignored, and only the statis-
tics of the frame descriptors are taken into account. This approach
has been shown to be sufficient for discriminating different sound
environments [12]. However, for the case of sound events we think
that time varying aspects of the sound are determinant to recognize
different classes. This is especially true for impulsive classes such
as impacts and explosions or splashes, and to a lower extent by
classes that imply some regularity, like rolling.

In this paper we analyze the performance of some descriptors
extracted from the time series of frame level descriptors for our
classification task. We test two sets of frame-level features:

• MFCC: An implementation of Mel Frequency Cepstrum Co-
efficients using 40 bands and 13 coefficients.

• Spectral: A collection of spectral shape descriptors such
as spectral centroid, kurtosis, skewness, crest, decrease and
rolloff, along with an estimation of pitch and pitch salience.

We use MFCCs as a reference as they are one of the most
commonly used representations of the spectrum. Our second set
includes descriptors of the spectral shape that were popularized
by the MPEG-7 standard [15]. We also include an estimation of
pitch and pitch salience, which have been shown to be relevant for
the discrimination of environmental sounds [13]. We compute the
mean and variance of every frame level descriptor, as well as mean
and variance of its first and second derivative. We also test several
descriptors computed from the temporal evolution of frame level
features, such as the log attack time, a measure of decay [16] and
temporal descriptors derived from statistical moments: temporal

Name Description # desc.
mv mean and variance 2
mvd mv, derivatives 6
mvdad mvd, log attack time and decay 8
mvdadt mvdad, temp. centroid, kurtosis, skewness 9

Table 1: Sets of descriptors extracted from the temporal evolution
of frame-level features, and the number of descriptors per frame
level feature.

Features mv mvd mvdad mvdadt
MFCC 69.35 75.76 74.98 77.80
Spectral 73.17 78.04 80.02 81.29

Table 2: Average classification accuracy (%) for different sets of
features.

centroid, kurtosis and skewness (table 1).

3.4. Experiments

We use a Support Vector Machine (SVM) classifier [17] in order to
assign a given feature vector representing one sound to one of the
classes in the taxonomy. Our first experiment consists in an eval-
uation the performance of the temporal descriptors applied only
to MFCC features. We repeatedly evaluate a one vs one multi-
class SVM classifier using a set of MFCC descriptors where we
progressively add temporal evolution descriptors. We then repeat
the procedure with the second set of descriptors and compare the
results.

The second experiment consists in comparing the one vs one
classifier to a hierarchical classification scheme, where we train
separate models for the top level classes (solids, liquids and gases)
and for each of the top level categories (i.e. for solids we train a
model to discriminate impacts, scraping, rolling and deformation
sounds). For this experiment we combine both MFCC and spectral
shape features with their corresponding temporal descriptors.

Our general procedure starts by resampling the whole database
in order to have a balanced number of examples for each class. We
then evaluate using ten-fold cross-validation. We run this proce-
dure five times and average the results in order to account for the
random resampling of the classes with more examples. We esti-
mate the parameters of the model using grid search only in the
first iteration in order to avoid overfitting each particular sample.
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type of temporal patterning. These objects are only found at a more
specific level.

Finally, our results stress that temporal patterning is a very
important cue to identify and categorize sound events and reflects
the physical action generating the sound.

General Discussion

Our aim in this research was to study how listeners categorize
environmental sounds and whether their categorization corre-
sponds with the taxonomy of sound production hypothesized by
Gaver (1993b). First, we studied the categorization of a set of
everyday sounds. Next, we only focused on sounds made by solid
objects.

A survey of previously reported studies of sound categorization
highlighted two issues: the coexistence of several classification
strategies in the mathematical representations of the data and the
difficulty of analyzing the participants’ verbalizations. To address
these issues, we used a technique to mathematically represent the
data (two dendrograms). The verbalizations were submitted to a set
of systematic linguistic analyses.

The study of the categorization of a set of everyday sounds
(Experiment 1) highlighted an organization based on the causes of
the sounds. The categorization occurred first at a general level of

sound sources, such as solids, liquids, gases, and machines. These
categories were similar to the categories of sound events proposed
by Gaver (1993b). At a second level of categorization, the subcat-
egories were related to the actions generating the sounds. These
actions were specific to each sound source. Overall, we found
fewer categories than Gaver (1993b) did. This was probably be-
cause the other categories do not usually occur in a kitchen. The
sounds of liquids seemed to have a specific perceptual status: they
were systematically categorized as liquid sounds even if they could
be labeled as hybrid sound events (liquid and solid interactions).
We hypothesize that these sounds had their own acoustical prop-
erties that distinguished them from the other sounds (Gygi et al.,
2007).

Following the results of the first experiment, we focused on
the sounds produced exclusively by solid interactions. We asked
the participants to classify sounds by physical actions. We used the
same protocol to analyze the data (hierarchical cluster and statis-
tical analysis of the verbalizations). The first lexical analysis
showed five different categories of representative verbalizations
that were organized into two large semantic categories. The struc-
ture of the semantic categories overlapped the organization of the
main clusters of the primary dendrogram (Experiment 2), indicat-
ing a correspondence between the verbalizations and the catego-

Figure 8. Experiment 2. Summary of the first and second lexical analyses. The organization between the
different categories of representative verbalizations (CRVs; first analysis) and the different main categories and
their semantic portraits (second analysis) is depicted with lines. The Roman numbers Is, IIs, IIIs, IVs, and Vs

indicate the categories of representative verbalization CRVs identified by the analysis. The Arabic numbers 1 to
13 correspond to the main clusters from the primary dendrogram (see Figure 6). Within each CRV, the lexical
forms are summarized and organized in subcategories (first level: double lines, second level: single lines).
Category 8 is marked with a dotted line because it was not associated with a CRV during the first analysis.
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