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An Optimization Method for Quantitative
Impedance Tomography

Emilie Franceschini, Serge Mensah, Löıc Le Marrec, and Philippe Lasaygues

Abstract—A near-field ultrasonic tomography method
providing high resolution imaging for soft tissue in the re-
flection mode is reported. When the Born approximation is
valid, the main limitation of this method is that it requires
an incident pulse with infinite bandwidth, whereas the in-
cident pulses used in practice have a limited bandwidth,
which makes quantitative reconstruction impossible. The
reconstructed image is qualitative in the sense that it is a
band-pass filtered reconstruction of the impedance distri-
bution. An optimization method based on the use of the
geometrical information provided by the tomographic re-
construction is developed to obtain the quantitative infor-
mation required. The object was approximated locally by
an equivalent canonical body, on the basis of the previous
global estimation. The inversion procedure is then carried
out using the minimization of a cost function, which is the
average over frequency of the difference between the mea-
sured field scattered by the object and the estimated field
scattered by the equivalent canonical body. Assuming the
object to be homogeneous by regions, the last step consists
of assigning the estimated local impedance value to the re-
gion of interest. When the geometry of the real body is
almost canonical, the optimization method yields accurate
impedance assessments.

I. Introduction

During the past four decades, many clinical studies
have suggested that a diagnostic imaging device sen-

sitive to differences in the tissue properties would be a
useful means of improving detection and characterization
procedures [1]–[4]. With this aim in view, several research
workers took an early interest in quantitative reconstruc-
tion procedures and attempted to develop inverse scat-
tering methods such as ultrasound computed tomography
and, in particular, diffraction tomography methods. These
methods require a plane wave incident illumination and
single or multiple frequency scattering measurements at
multiple transducer locations. They make it possible to
reconstruct tissue parameters such as the attenuation and
index of refraction [5], [6], the density and compressibil-
ity [7]–[9], or the impedance and sound speed [10]–[12].
However, most present-day ultrasound scanners are circu-
lar antenna systems working in the near field [13]–[19].
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Two main approaches have been used to write the forward
problem in the near field. One approach consists of using
the transducer array to produce a synthetic plane wave
and basing the forward problem on a plane wave assump-
tion [13], [18], [19]. The other approach consists of taking
a spherical wave incident illumination in order to formu-
late the forward scattering problem [20], [21]. The main
advantage of the latter approach is that it takes the spatio-
temporal development of the insonifying wave (in the near
field) into account in order to provide better Fourier space
coverage.

A forward problem modelling study using an acousti-
cal model characterized in terms of impedance and sound
speed fluctuations was recently published [22], [23]. In that
paper, the medium to be imaged was insonified by a spheri-
cal wave with an infinite bandwidth, and the scattered field
was measured within a circular antenna located in the near
field. The forward problem formulation obtained was simi-
lar to that obtained in the far-field domain with plane wave
incident illumination [12]. With both approaches [12], [22],
[23], the spectral response of the medium is determined
in terms of the Laplacian of the impedance and sound
speed fluctuations, which give opposite local directivity
diagrams: the impedance predominates in the reflection
mode, and the sound speed predominates in the transmis-
sion mode. The main limitation of this impedance tomog-
raphy method is that it requires an incident pulse with
an infinite bandwidth, whereas the incident pulses used in
practice have a limited bandwidth, which makes quanti-
tative reconstruction impossible. The reconstructed image
is qualitative in the sense that it is a band-pass filtered
reconstruction of the parameter distribution [24], and the
only useful information it yields is the geometrical nature
and the relative amplitude echo.

The aim of the present study was to obtain quantita-
tive information on the basis of a high resolution qualita-
tive tomographic reconstruction [22], [23]. The optimiza-
tion method used for this purpose was based on the min-
imization of a cost function, which quantifies the discrep-
ancy between the measured and estimated scattered fields
[25]. The search for the minimum was carried out using an
iterative process consisting of resolving the forward prob-
lem at each iteration. To enhance the speed of the com-
putations during the minimization procedure, we used an
analytical formulation for the field based on a canonical
approximation of the object geometry. The forward solver
was therefore explicitly calculated without requiring any
approximation about the fields. This method is therefore
suitable for obtaining quantitative information when the
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Fig. 1. Scattering acquisition configuration. In active ultrasonic to-
mography, a transducer e (which is smaller than half a wavelength)
transmits a spherical wave which is scattered and recorded by a re-
ceiver r placed on the same spherical surface closely surrounding the
organ (i.e., the breast).

geometry of the real body is almost canonical. Numeri-
cal simulations performed on a soft tissue simple phan-
tom show how useful these optimization techniques can be
when applied to tomographic applications.

II. Background: Near-Field Ultrasound

Tomography

A. Definition of the Elliptical Fourier Transforms

Let us define the compact domain D of R
N N = 2, 3,

corresponding to the organ to be imaged and the acquisi-
tion sphere (or circle, in the two-dimensional (2-D) case)
S surrounding the compact domain D. The acquisition
sphere radius R is such that ∀x ∈ D, ‖x‖ < R. A trans-
ducer located in e, e ∈ S, transmits a spherical wave with
an angular frequency ω. The field scattered by the medium
is recorded in r, r ∈ S.

We take nφ,θ to denote the unit vector of the mediatrix
in the incident direction specified by the angles (Fig. 1):

φ = π +
1
2
(χe + χr) the incident angle,

θ =
1
2
|χe−χr| the configuration angle in the plane (e, r).

The elliptical wave vector K = knφθ is then defined.
The elliptical scalar product defined for a fixed configura-
tion (e, r) or equivalently (φ, θ) is introduced:

K ⊗ x = −k nφ,θ ⊗ x

� −k(‖x − eK‖ + ‖x − rK‖),
(1)

where k = ω/c0 is the wavenumber of the illuminating
wave having sound speed c0 in the host medium. We ob-
serve that K ⊗ x = Ψ, Ψ ∈ R, is the equation of the

ellipsoid of focii, the transmitter and the receiver; the sum
of distances from the focii is Ψ.

Let f(x) be a well-behaved function defined over D and
null elsewhere. The Elliptical Fourier transform FE is de-
fined by

FE(f(x)) = f̆(K) =
∫

f(x)
e−iK⊗x

[x]K
dx, (2)

where the distance [x]K is defined by [x]K = 16 π2‖x −
eK‖ · ‖x− rK‖. The inverse Elliptical Fourier transform is
then defined as follows:

FE
−1

(
f̆(K)

)
= f(x) =

1
(2π)N

∫
f̆(K)[x]KeiK⊗x dK.

(3)

B. Forward and Inverse Tomographic Problem

We neglect the absorption-dispersion phenomena in or-
der to concentrate on the diffusion resulting from the in-
homogeneities (for practical applications of these results, a
time gain compensation, TGC, should probably be used).
We describe the inhomogeneous media in terms of their
density ρ and velocity c distributions. Let ρ0, c0 be the
acoustic characteristics of the surrounding medium. We
introduce the parameters 2α = (c2 − c2

0)/c2 and ξ =
Log(z/z0), corresponding to the quadratic fluctuations of
velocity c and to the logarithmic variations of impedance
z = ρc, respectively. In view of the fact that the biological
tissues are weakly inhomogeneous media (α ∼ ξ ∼ 10−2),
we obtain, at order one in α, the following impedance-
velocity propagation equation of the pressure P [12]:

− 1
c2
0

∂2P

∂t2
+ ∆P = −2α

c2
0

∂2P

∂t2
− ∇α · ∇P + ∇ξ · ∇P.

(4)

The medium is excited with a spherical wave having an-
gular frequency ω, the emitter being located in e:

pi(x, e, ω) =
eik‖x−e‖

4π‖x − e‖ . (5)

The solution of (4) is P = p e−iωt; p is the solution of the
Helmholtz equation which can be written in its integral
form:

p(r, e, ω) = pi(r, e, ω) +
∫

D
g(r,x, ω)[2k2α(x)p(x, e, ω)

− ∇α(x) · ∇p(x, e, ω) + ∇ξ(x) · ∇p(x, e, ω)]dx, (6)

where the integration volume D corresponds to the com-
pact support of α and ξ, and g is the free-space Green
function; the scattered field is measured in r:

g(r,x, ω) = − eik‖r−x‖

4π‖r − x‖ . (7)

We assume that the scattering is sufficiently weak to
be able to linearize the inverse problem (using the Born
approximation); the scattered field pd becomes
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pd(r, e, ω) =
∫

g{2k2αpi − ∇α∇pi + ∇ξ∇pi} dx.
(8)

We differentiate pi:

∇pi(x, e, ω) =(
ik − 1

‖x − e‖

)
· ∇(‖x − e‖) · eik‖x−e‖

4π‖x − e‖ . (9)

In (9), 1/‖x − e‖ is negligible in comparison with ik. In-
deed, in soft tissues, c0 ≈ 1540 ms−1; and in the near
field zone of interest, ‖x − e‖ ≈ 10−2 m. The angu-
lar frequency components of the transmitted pulse (based
on current echographs) are generally larger than ωref =
2π · 2.5 106 rad.s−1; thus k‖x − e‖ ≈ 102 rad. The obser-
vation distance is greater than the wavelength.

We define ne (respectively, nr), the unit vector along
the emitter (respectively, receiver)-voxel line that we call
the e−x axis (respectively, the x−r axis): ne = ∇(‖x−e‖).
The scattered field is

pd = −
∫

D

e−iK⊗x

[x]K
{2k2α − ik ne [∇α − ∇ξ]} dx,

(10)

and according to the definition of the elliptical Fourier
transform, pd then reduces to

pd(K) = −FE{2k2α − ik ne [∇α − ∇ξ]}(K)|K=k nφ,θ
.

(11)

The derivation rule introduced in [22], [23] yields the ex-
pression:

pd(r, e, ω) =

−K2
[
FE(1 − ne · nr) ∗ ᾰ + FE(1 + ne · nr) ∗ ξ̆

]
(K)

= −h(r, e, ω)), (12)

where “∗” is the convolution product, and K is equal to
|K|; ᾰ(K) = FE [α(x)] and ξ̆(K) = FE [ξ(x)] are the el-
liptical Fourier transforms of the functions α(x) and ξ(x).
The term h represents the elliptical spatial transfer func-
tion of the medium in the case of a specific configuration
defined by e and r. This configuration involves two pa-
rameters offering opposite local directivity diagrams: the
velocity predominates in the transmission mode [Fig. 2(a)],
whereas the impedance predominates in the reflection
mode [Fig. 2(b)]. This composite object results in a sum-
mation of the elementary contributions integrated over the
whole object volume, weighted by their local directivity in-
dexes.

When ne = nr, i.e., in the pure reflection mode,

h(e, r, ω) = 2K2 ξ̆(K)|K=k nφ,0 =
1
2
FE

[
∇2ξ(x)

]
.
(13)

When ne = −nr, i.e., in the pure transmission mode,

h(e, r, ω) = 2K2 ᾰ(K)|K=k nφ,π
=

1
2
FE

[
∇2α(x)

]
.
(14)

(a) (b)

Fig. 2. Directivity diagrams of α (a) and ξ (b): The velocity effects
predominate in the transmission mode (a); the impedance fluctua-
tions account mainly for the scattering in the reflection mode (b).

At this stage, we have derived a practical means of sep-
arating the respective contributions of the impedance fluc-
tuations and those of the sound speed fluctuations to the
near-field data. The application of the inverse elliptical
Fourier transform enables one to reconstruct the Lapla-
cian of one of the acoustical parameters. We choose to re-
construct the impedance and will operate in the reflection
mode.

Besides, one can show that for a 2-D function f defined
over D,

f(x) =
1

(2π)2

∫ π

0

∫ ∞

−∞
FE [f ](S)|S|eiSnφ⊗x[x]φ dS dφ

=
1

(2π)2

∫ ∞

−∞
p̂φ(S)|S|eiSφ⊗x[x]φ dS dφ, (15)

where p̂φ is the (standard) Fourier transform of the ellip-
tical projection of f measured under the incidence φ; in a
practical situation, it corresponds to the scattered field.

This formulation is the continuous expression of the
classical backprojection of the filtered projection algorithm
used so far in computer-assisted tomography; only the el-
liptical nature of the projections differs. We then obtain a
solution to the inverse problem.

III. Optimization Method

The optimization method used here was based on a
canonical approximation of the object geometry. Let I be
the closest point to the receiver r located at the inter-
section between a specific measurement direction and the
object border. We assume that the field scattered by the
actual object and measured in a specific direction is fairly
well approximated by the scattering resulting from a cen-
tered circular cylinder, whose radius is equal to the dis-
tance between the reference frame center 0 and the point
I and which has the same acoustic properties as the ob-
ject. This approximation is quite similar to the intercept-
ing canonical body approximation (ICBA) [26]. The main
idea is thus to mimic the actual body using a canonical
equivalent body from which the solution of the scattering
problem can be explicitly calculated and used as a forward
solver during the inversion. This approximation provides,
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Fig. 3. Equivalent canonical configuration of the configuration stud-
ied.

therefore, fast computations and is suitable for use with
iterative methods involving a large amount of data when
wideband probing and several measurement angles are in-
volved.

The object (or complex organ) studied was approxi-
mated by simple shapes representing a soft tissue with a le-
sion. Fig. 3 gives the canonical equivalent configuration of
the configuration studied: a circular tube – medium Ω1 – of
external radius re (impedance z1 and sound speed c1), with
its interior cavity – medium Ω2 – of radius ri (impedance z2
and sound speed c2). The external re and internal ri radii
of the equivalent tube are determined using tomographic
reconstruction methods. The inverse problem is therefore
reduced to the unknown parameters τ = (zj , cj)j=1,2 of the
two media Ω1 and Ω2 and solved using the optimization
method.

A. The Local Inversion Method

The inversion is carried out using scattered field mea-
surements. The media are assumed to be linear, homoge-
neous, isotropic, and non-lossy. Some of the properties of
the scattering problem are known: the acoustic character-
istics of the surrounding medium Ω0 (impedance z0 and
sound speed c0), the incident field pi located at e, and the
scattered field ps recorded by receivers r at several scat-
tering angles γ = 2θ. The center of the acquisition circle
S with radius R coincides with the center of the object.

At a single frequency, the estimated field scattered by
a canonical object ps,e (outside the object) can be explic-
itly calculated using its expansion into a complete set of
functions, the so-called partial waves:

ps,e(r, f) =
N∑

n=−N

bnH(1)
n (k0R) exp(inχr), ∀r ∈ S ⊂ Ω0,

(16)

where bn is the n-th component of the scattering coefficient
exactly evaluated using the Rayleigh-Fourier method [27],
[28] and H

(1)
n is the first-kind Hankel function of order

n. Convergence of this calculated quantity is obtained for
N = Ent (4.05(k0re)1/3+k0re+15) where Ent is the entire
part function [29]. The unknowns τ can be determined by
matching the measured field ps with the equivalent canoni-
cal approximation model of this field ps,e. For this purpose,
we searched for the τ minimizing the single frequency cost
function:

F(τ/r, f) = ‖ps(r, f) − ps,e(τ, r, f)‖2. (17)

In order to determine the local impedance in a given ob-
servation direction, we have to solve the nonlinear equa-
tion (17) containing two unknowns (either z1 and c1, or
z2 and c2 with z1 and c1 given). Since the impedance pa-
rameter predominates in the reflection mode (Fig. 2), if
one operates in the pure reflection mode (the emitter and
the receiver are merged in the backscattering), the sound
speed cj (j = 1 or 2) can be imposed a priori and the
only unknown will be zj , so that performing a single mea-
surement at a single frequency should suffice to fully de-
termine the local impedance value. However, the problem
is less trivial, since the solution of the inverse problem is
often non-unique, so that the cost function has several lo-
cal minima (solutions). One way of overcoming this prob-
lem consists of adding to the cost function a regularization
operator expressing some a priori assumptions about the
solution [30], [31]. The relative confidence of the regular-
ization procedure depends on a real positive parameter,
the choice of which is rather delicate and depends on the
configuration under consideration. Another solution con-
sists of increasing the amount of data and/or using several
initial guesses to find the right estimation [32], [33]. In
[32], multiple frequency data are treated independently, so
that several minima are obtained for each cost function.
A post-processing algorithm is then applied to determine
the unique solution. This procedure has the disadvantage
of requiring as many minimizations as there are frequen-
cies and it is therefore highly time consuming.

The method used here consists of using broadband ul-
trasonic scattering. We recently established the robustness
of this method in comparison with the classical algorithm
working with monochromatic signal (using ICBA as for-
ward solver) for reconstructing the shape of non-circular
tubes [33]. This method is based on the minimization of
a single cost function, the mean cost function, which syn-
thesizes all of the frequencies fl (l = 1 · · ·L) included in a
single measurement:

F(τ/r, fl) =
1
L

L∑
l=1

F(τ/r, fl)

=
1
L

L∑
l=1

‖ps(r, fl) − ps,e(τ, r, fl)‖2.
(18)

Averaging the frequencies has constructive effects on the
frequency invariant minimum and destructive effects on
the other minima.

B. Inversion Procedure

In what follows, we will distinguish between the un-
knowns we are looking for in the inverse problem and the
imposed a priori unknowns. The a priori value can be
either accurate or inaccurate. For each τ variable in the
inverse problem, we define the exact solution τ̂ and the
assessment domain [τmτM ].
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The mean cost function depending on the variables τi

(i ∈ N)is written

F(τi/τa
j , τk, γ), i, j, k ∈ N, i 
= j 
= k,

when the variables τa
j (j ∈ N, j 
= i) are imposed a priori,

and the scattering angle γ and the variables τk (k ∈ N,
k 
= i, j) are exactly known. The solution is denoted τ∗

i .
We take r∗

e and r∗
i to denote the external and internal radii

of the equivalent tube, since these values are determined
by the tomographic reconstruction procedure.

The inversion procedure for the optimization method
involves three steps:

1. Finding the impedance z1 from a measurement in the
pure reflection mode. The external radius of the equiv-
alent tube r∗

e and the sound speed imposed a priori ca
1

are given. During the inversion by minimization, in
order to approximate a heterogeneous body (with in-
clusions) to a homogeneous body, we restrict the scat-
tered field measured to the specular echo (thanks to
a weighting time window). Assuming the object to be
homogeneous by regions and the specular echo to be
devoid of any object depth information, the estimated
local value of the impedance z∗

1 is allocated to the
medium Ω1.

2. Finding the velocity c1 from several measurements in
the diffraction mode with weak scattering angles. The
values r∗

e and z∗
1 are given. We operate in the diffrac-

tion mode with the first wave packet and with weakly
scattered angles in order to avoid working with signals
containing unwanted information about the scattering
of inclusions.

3. Finding the impedance z2 from a measurement in the
pure reflection mode. The values r∗

e , r∗
i , z∗

1 , c∗
1, and

ca
2 are given. The first and second wave packets are

used for the inversion procedure. The aim is to mainly
use the amplitude of the second wave packet, which
depends only on the impedance value z2.

IV. Application to Simulated Data

In order to assess the validity of the reconstruction pro-
cedure presented in the previous section, we used a 2-D
numerical tissue-like phantom (Fig. 4) giving a scatter-
ing response, which was computed using a finite element
method (FEM). This method, which was described in [34],
models the time-domain acoustic wave propagation occur-
ring in fluid media and is based on the discretization of
the mixed velocity-pressure formulation for acoustics. One
of the advantages of this method is that it requires no
physical approximation to be made in the framework of
linear acoustics; our method thus automatically accounts
for multiple scattering, refraction, and reflection. The dis-
cretization of the problem in space is based on a mixed
FEM [35], and the discretization in time is performed us-
ing a 2nd-order-centered finite difference scheme. The sim-
ulation grid is surrounded by perfectly matched layers sim-
ulating unbounded domains [36].

Fig. 4. Impedance map of the cylindrical academic computer phan-
tom.

Fig. 5. A 2.5-MHz cylindrical wave used in the FEM simulations in
the time and frequency domains.

The size of the spatial step in the finite element
grid is taken to be one thirtieth of the wavelength. A
grid consisting of 1000 × 1000 pixels (∆x = 0.015 mm,
1.5 cm × 1.5 cm) is used here. The ring antenna is com-
posed of 360 equally spaced transducers (point-like trans-
mitters and receivers, central frequency 2.5 MHz, λ =
0.6 mm) and has a radius of R = 7.29 mm. Each transducer
transmits a short pulse, while the remaining elements act
as receivers. The temporal and spectral plots of the trans-
mitted pulses are shown in Fig. 5. The cylindrical academic
phantom, which is immersed in water (density 1000 kg/m3,
velocity 1500 m/s), simulates a fluid object having the fol-
lowing characteristics: impedance 1.4112 MRayl and ve-
locity 1470 m/s. The external radius of the cylinder is
6.6 mm. The radii of the holes are r1 = 3λ = 1.8 mm,
r2 = 2λ = 1.2 mm, r3 = λ = 0.6 mm, and r4 = λ/2 =
0.3 mm. The inclusions have the following characteristics:
impedance 1.782 MRayl and velocity 1620 m/s. We can
note in Fig. 4 that each inclusion j(j = 1 · · · 4) is located
in such a way that in the pure reflection mode r = Pj , the
interior radius of the equivalent tube equals 5.4 mm.

Fig. 6(a) shows the impedance tomogram reconstructed
with the EBP procedure when the data were acquired over
a finite aperture of 10◦ centered on the transmitter (quasi-
pure reflection mode). This reconstruction can be com-
pared with the Laplacian of a Gaussian filter applied to
the logarithmic variations of the impedance ξ map shown
in Fig. 6(b). The 2-D filter used here is 20 × 20 pixels in
size with a standard deviation of 8 pixels, and was obtained
using the fspecial(‘log’) command of the Matlab image pro-
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(a) (b)

Fig. 6. (a) EBP reconstruction. (b) Laplacian of a Gaussian filter applied to the logarithmic variations of impedance ξ map.

Fig. 7. Snapshots showing the propagation of a compressional wave (fluid media) through the numerical phantom when a circular wave is
emitted in P1. The white arrows indicate the positions of the receivers used in the pure reflection or diffraction modes to assess the unknown
parameters.

cessing toolbox (The MathWorks, Inc., Natick, MA). One
can note the good contrast of the image and the high reso-
lution obtained: this procedure makes it possible to detect
objects of the same size as the wavelength. On the basis of
the object geometry shown in Fig. 6(a), the external and
internal radii of the equivalent tubes (for the observation
points Pj , j = 1 · · · 4) were estimated with a relative error
lower than 0.37%. Table I gives the evaluated radii. The
optimization method was then applied. Fig. 7 shows the
propagation of a compressional wave through the numer-
ical phantom when a circular wave is emitted in P1. The
white arrows show the positions of the receivers used in
the pure reflection mode for the impedance assessments
[Fig. 7(a) and (b)] and in the diffraction mode for the
sound speed assessments [Fig. 7(c)–(f)]. This sequence of
images is a useful means of checking the wave packets used
in the inversion procedure.

TABLE I
Internal Radius of the Equivalent Tube Obtained by

Qualitative Imaging (in the Observation Direction).

Actual radius Evaluated radius Relative error
(mm) (mm) (%)

Matrice 6.6 6.6 0
Inclusion 1 5.4 5.42 0.37
Inclusion 2 5.4 5.41 0.19
Inclusion 3 5.4 5.4 0
Inclusion 4 5.4 5.4 0

A. Assessment of the Impedance z1 in the Pure
Reflection Mode

We consider one emitter/receiver located at P1 and we
work only with the specular echo (Fig. 8). As shown in
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Fig. 8. Fields scattered by the equivalent tube calculated using (16)
(—) and those scattered by the real object recorded at P1 (---) and at
P4 (· · · ) and obtained using the finite element code (field measured
in the pure reflection mode).

TABLE II
Assessment Domains of the Equivalent Tube Parameters.

τ τm τ̂ τM

z1 (MRayl) 1.12 1.4112 1.85
c1 (m/s) 1400 1470 1800
z2 (MRayl) 1.12 1.782 2.58
c2 (m/s) 1400 1620 1800

Fig. 7(a), the specular echo originates only from the wave
reflected by the object matrix. Fig. 8 compares the fields
backscattered by the equivalent tube calculated using (16)
and by the real object (obtained with the FEM) recorded
at P1 and P4. The specular echoes recorded at P1 and
P4 are identical and in agreement with the specular echo
given by the equivalent canonical model of the actual field.
This method can therefore be expected to give an accurate
assessment of the impedance z1.

The assessment domains of the unknowns z1 and c1
are given in Table II. Fig. 9(a) gives the logarithm of
the mean cost functions F(z1, c1/r∗

e , γ0) depending on the
impedance z1 and the sound speed c1. The logarithm is
shown here in order to enhance the lecture of the cost func-
tions. It is worth noting that the impedance assessment z1
is not affected by the sound speed value c1: whatever the
sound speed, the cost functions have the same appearance
and have a single minimum in the assessment domain un-
der consideration [Fig. 9(b)]. An a priori assumption can
therefore be made about the sound speed, which is taken
to be equal to that of water (soft tissue) ca

1 = 1500 m/s.
The estimated impedance is

z∗
1 = 1.4085 MRayl.

B. Assessment of the Sound Speed c1 in the Diffraction
Mode

The medium is excited with a circular wave, with the
emitter located at P1. The scattered field is recorded with
several scattering angles in clockwise order 0◦ ≤ γ ≤ 180◦

(thus including the recorded points P1 = 0◦, P2 = 90◦,

and P3 = 180◦). Only the first wave packet in each scat-
tered signal is used for the inversion procedure. Fig. 10
gives the mean cost functions F(c1/z∗

1 , r∗
e , γ) depending

on the sound speed c1 for several scattering angles γ = 0◦,
15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. It can be seen here that
the larger the scattering angle was, the more pronounced
the minimum became, since the velocity predominates in
the transmission mode. A similar analysis was carried out
using the directivity diagrams of the impedance and ve-
locity fluctuations (Fig. 2).

Fig. 11 gives the estimated sound speed (minimum of
the cost function) c∗

1(γ/z∗
1 , r∗

e) with scattering angles 0◦ ≤
γ ≤ 180◦. With the scattering angle γ ≤ 8◦, the error
ranged between 6 and 70 m/s: the scattering angle was
too weak here to be able to estimate the velocity, since
in the reflection mode, the impedance is the most robust
parameter. This finding is also illustrated in Fig. 9(a) and
Fig. 10 for γ = 0◦: when the impedance was fixed, the cost
function depending on the sound speed c1 was quasi-null
and had no distinct minimum in the pure reflection mode.

With 10◦ ≤ γ ≤ 84◦, the error was less than 5 m/s. At
these scattering angles, the first wave packet, which origi-
nates from the matrix scattering, is clearly detached from
the second wave packet, which originates from the scat-
tering induced by the biggest inclusion [Fig. 7(c) and (d)].
Accurate velocity assessments were therefore obtained in
this case.

From scattering angles greater than 85◦ onward, the
assessment of the sound speed was found to be increasingly
inaccurate, due to the multiple reflections measured at the
receivers. As can be seen in Fig. 7(e), the second wave
packet catches up with the first wave packet so that it is
difficult to separate their time patterns. In Fig. 7(f), the
scattered field measured (γ = 90◦) is highly complex, since
the field arising from inclusion 2 and all of the multiple
reflections are measured at the same time.

We decided to estimate c∗
1 by averaging the sound

speeds estimated with scattering angles 25◦ ≤ γ ≤ 45◦.
The estimated sound speed is

c∗
1 = 1470.1 m/s.

C. Assessment of the Impedance z2 in the Pure
Reflection Mode

The assessment domains of the unknowns z2 and c2
are given in Table II. One emitter/receiver is located
at P1. Fig. 12(a) illustrates the logarithm of the mean
cost functions F(z2, c2/z∗

1 , c∗
1, r

∗
e , r∗

i , γ0) depending on the
impedance z2 and the sound speed c2. As we noted when
assessing z1, the impedance assessment z2 is not affected
by the sound speed value c2. When a sound speed c2 of
1500 m/s is imposed a priori [Fig. 12(b)], the estimated
impedance for the inclusion 1 is

z∗
2 = 1.7069 MRayl.

In Fig. 13, the second wave train of the field scattered by
the equivalent tube and that scattered by the real object
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(a) (b)

Fig. 9. (a) Mean cost functions Log
(
F(z1, c1/r∗

e , γ0)
)

depending on z1 and c1 in the pure reflection mode (γ = 0◦). (b) One mean cost

function F(z1/ca
1 , r∗

e , γ0) depending on z1 in the pure reflection mode when the velocity is a priori imposed ca
1 = 1500 m/s.

Fig. 10. Mean cost functions F(c1/z∗
1 , re, γk) for several scattering

angles k when the impedance is known (z∗
1 = 1.4085 MRayl).

Fig. 11. Estimated velocity c∗
1(γk/z∗

1 , re) for several scattering angles
γk = 0◦ · · · , 90◦ when the impedance is known (z∗

1 = 1.4085 MRayl).

with an emitter/receiver located at Pj (j = 1 · · · 4) (pure
reflection) are compared. When the radii of the inclusions
decreased, the amplitudes of the second wave trains also
decreased and so did the match between the scattering in-
duced by the equivalent interior cavity and the scattering
induced by the inclusions. The estimated impedances were
therefore increasingly inaccurate [Fig. 12(b)]. Table III
summarizes the results.

In short, the method described here gives good re-
sults when the object under investigation can be approxi-
mated by a canonical object: the relative error in the ma-
trix impedance assessment was found here to be 0.19%.
Even when there was a large relative error in the curva-

ture radius (66% in the case of the largest inclusion), the
impedance assessment was found to be quite satisfactory
(relative error 4.21%).

V. Discussion and Conclusion

As we have recalled here, it is difficult with the diffrac-
tion tomography method to obtain impedance values, but
this method gives high-resolution qualitative imaging in
the reflection mode. An optimization method making use
of the geometrical information provided by the tomo-
graphic reconstruction was developed to obtain the quanti-
tative information required. The object was approximated
locally by an equivalent canonical body, on the basis of
the previous global estimation. This canonical body is a
model reduction which can be used to predict local mea-
surements analytically. The inversion procedure was then
carried out using an iterative resolution of the forward
problem minimizing the difference between the measured
field scattered by the object and the estimated field scat-
tered by the equivalent canonical body. When the object
geometry can be well approximated by a canonical body,
using canonical body approximation as a forward solver for
the inversion procedure yields accurate acoustic parame-
ter assessments with broadband measurements. In addi-
tion, by averaging the cost function over the frequency, no
additional regularization is required. Assuming the object
to be homogeneous by regions, the last step in our recon-
struction procedure consisted of assigning the estimated
local impedance value to the region of interest.

In the present study using the simple numerical phan-
tom, good agreement was observed between tomographic
and optimization methods, in terms of the predominance
of the parameters in the reflection and transmission modes.
In the near field tomographic formulation, the spectral re-
sponse of the medium depends on the sound speed and
impedance fluctuations. The directivity diagrams for these
two parameters are opposite cardiodes: the impedance pre-
dominates in the reflection mode and the sound speed in
the transmission mode. The cost functions reflect this dif-
ference in terms of the sharpness of the minima. Likewise,
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(a) (b)

Fig. 12. (a) Mean cost functions Log
(
F(z2, c2/z∗

1 , c∗
1, r∗

e , r∗
1 , γ0)

)
depending on z2 and c2 in the pure reflection mode (γ = 0◦). (b) For each

inclusion j (j = 1 · · · 4), mean cost function F(z2/ca
2 , z∗

1 , c∗
1, r∗

e , r∗
j , γ0) depending on z2 in the pure reflection mode when the velocity is

imposed a priori ca
1 = 1500 m/s.

TABLE III
Impedance Obtained by Minimization.

Relative error
Impedance obtained Relative error on the curvature

Actual impedance by minimization on the impedance radius
(MRayl) (MRayl) (%) (%)

Matrice 1.4112 1.4085 0.19 0
Inclusion 1 1.7820 1.7069 4.21 66
Inclusion 2 1.7820 1.6724 6.15 77
Inclusion 3 1.7820 1.6152 9.36 88
Inclusion 4 1.7820 1.5621 12.34 94

Fig. 13. Second wave trains of the fields scattered by the equivalent
tube calculated using (16) (—) and by the real object recorded at
Pj in the pure reflection mode.

it is worth noting the robustness shown by the impedance
parameter in comparison with the sound speed parameter
in the pure reflection mode when cost functions depend-
ing on these two parameters were drawn up. Moreover,
since solving the forward problem based on the canoni-
cal body approximation model doesn’t make any approx-
imations about the propagation process, the optimization
method yields quantitative estimations, which is not pos-
sible with the tomographic method because the transducer
bandwidth is limited.

In the present study, applying optimization techniques
to tomographic methods was found to be beneficial. Quite

accurate local impedance assessments were obtained even
when the equivalent body did not have the same curvature
radius as the actual body. To approximate the holes, an
equivalent object, such as a cylinder out of center with the
true curvature radius, would obviously give better results.
However, this would require a more sophisticated and more
time-consuming forward solver such as those based on do-
main or volume integral representations. One could even
envisage developing more complex equivalent models using
finite-difference time-domain simulations [37] as forward
solver in order to account for complex organ geometries
such as that of the breast. As a means of solving canonical
scattering problems giving exact solutions, the equivalent
canonical object method is not at all time consuming and
allows real-time reconstructions: a minimization involving
200 iterations (and thus 200 resolutions of the forward
problem) can be carried out in this way in less than 2
minutes. Besides, the equivalent model could be further
improved by developing a multilayer equivalent canonical
object, accounting for elastic and lossy media, or using a
three-dimensional model, for example.
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