LMA - Laboratoire de Mécanique et d’Acoustique

Bruno LOMBARD

Chargé de Recherche, CNRS
HDR

Research interests

  • Wave propagation in complex media
  • Numerical methods for hyperbolic systems
  • Poroelastic waves, fractional attenuation
  • Nonlinear acoustics, solitons
  • Nondestructive evaluation, slow dynamics
  • Physics of brass instruments

Biography

  • 1973 : born in Lyon (France)
  • 1994-1997 : Ecole Supérieure d’Ingénieurs de Marseille (now Ecole Centrale Marseille)
  • 2002 : PhD in mechanics, speciality acoustics (Aix-Marseille, France)
  • 2002-2003 : post-doc at the Departamento de Matematica Aplicada (Valencia, Spain)
  • 2003 – present : CNRS researcher at the Laboratoire de Mécanique et Acoustique (Marseille, France)
  • 2010 : habilitation thesis

Articles

36 - C. Bellis, B. Lombard, "Time-domain modelling and finite-difference schemes for acoustic metamaterials", submitted (2017).

35 - H. Berjamin, B. Lombard, G. Chiavassa, N. Favrie, "A finite-volume approach to nonlinear longitudinal elastic waves : application to slow dynamics", submitted (2017).

34 - H. Berjamin, B. Lombard, G. Chiavassa, N. Favrie, "Modeling longitudinal wave propagation in nonlinear viscoelastic solids with softening", submitted (2017).

33 - P. Vigué, C. Vergez, B. Lombard, B. Cochelin, "Continuation of periodic solutions for systems with fractional derivatives", submitted (2017).

32 - H. Berjamin, B. Lombard, G. Chiavassa, N. Favrie, "Analytical solution to 1D nonlinear elastodynamics with general constitutive laws", Wave Motion, 74 (2017), 35-55. Preprint.

31 - H. Berjamin, N. Favrie, B. Lombard, G. Chiavassa, "Nonlinear waves in solids with slow dynamics : an internal-variable model", Proceedings Royal Society London A, 473 (2017), 20170024. Preprint.

30 - J.F. Mercier, B. Lombard, "A two-way model for nonlinear acoustic waves in a non-uniform lattice of Helmholtz resonators", Wave Motion, 72 (2017), 260-275. Preprint.

29 - B. Lombard, A. Maurel, J.J. Marigo, "Numerical modeling of the acoustic wave propagation across an homogenized rigid microstructure in the time domain", Journal of Computational Physics, 335 (2017), 558-577. Preprint.

28 - H. Berjamin, B. Lombard, C. Vergez, E. Cottanceau, “Time-domain modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration”, Acta Acustica united with Acustica, 103 (2017), 117-131. Preprint.

27 - B. Lombard, D. Matignon, "Diffusive approximation of a time-fractional Burger’s equation in nonlinear acoustics", SIAM Journal on Applied Mathematics, 76-5 (2016), 1765-1791. Preprint.

26 - E. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, Z. Xie, “Highly-accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of attenuation“, Geophysical Journal International, 205 (2016), 427-439. Preprint.

25 - S. Bilbao, R. Harrison, J. Kergomard, B. Lombard, C. Vergez, “On passive models of wave propagation in acoustic tubes”, Journal of the Acoustical Society of America, 138-2 (2015), 555-558. Preprint.

24 - B. Lombard, J.F. Mercier, O. Richoux, “Numerical investigation of acoustical solitons”, Proceedings of the Estonian Academy of Sciences, 64-3 (2015), 304-310. Preprint.

23 - N. Favrie, B. Lombard, C. Payan, “Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations”, Wave Motion, 56 (2015), 221-238. Preprint.

22 - O. Richoux, B. Lombard, J.F. Mercier, “Generation of acoustic solitary waves in a lattice of Helmholtz resonators”, Wave Motion, 56 (2015), 85-99. Preprint.

21 - E. Blanc, G. Chiavassa, B. Lombard, “Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation : a Cartesian grid approach”, Journal of Computational Physics, 275 (2014), 118-142. Preprint.

20 - A. Ben Jazia, B. Lombard, C. Bellis, “Wave propagation in a fractional viscoelastic Andrade medium : diffusive approximation and numerical modeling”, Wave Motion, 51 (2014), 994-1010. Preprint.

19 - S. Junca, B. Lombard, “Stability of a nonlinear critical neutral differential delay equation”, Journal on Differential Equations, 256 (2014), 2368-2391. Preprint.

18 - B. Lombard, J.F. Mercier, “Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators”, Journal of Computational Physics, 259 (2014), 421-443. Preprint.

17 - E. Blanc, G. Chiavassa, B. Lombard, “A time-domain numerical method of two-dimensional wave propagation in porous media with frequency-dependent dynamic permeability”, Journal of Acoustical Society of America, 134-6 (2013), 4610-4623. Preprint.

16 - E. Blanc, G. Chiavassa, B. Lombard, “Biot-JKD model : simulation of 1D transient poroelastic waves with fractional derivatives”, Journal of Computational Physics, 237 (2013), 1-20. Preprint.

15 - G. Chiavassa, B. Lombard, “Wave propagation across acoustic / Biot’s media : a finite-difference method”, Communications in Computational Physics, 13-4 (2013), 985-1012. Preprint.

14 - M. Chekroun, L. Le Marrec, B. Lombard, J. Piraux, “Multiple scattering of elastic waves : a numerical method for computing the effective wavenumbers”, Waves in Random and Complex Media, 22-3 (2012), 398-422. Preprint.

13 - G. Lefeuve-Mesgouez, A. Mesgouez, G. Chiavassa, B. Lombard, “Semi-analytical and numerical methods for computing transient waves in 2D acoustic / poroelastic stratified media”, Wave Motion, 49-7 (2012), 667-680. Preprint.

12 - S. Junca, B. Lombard, “Interaction between periodic elastic waves and two contact nonlinearities”, Mathematical Models and Methods in Applied Sciences, 22-4 (2012). Preprint.

11 - B. Lombard, J. Piraux, “Numerical modeling of transient two-dimensional viscoelastic waves”, Journal of Computational Physics, 230 (2011), 6099-6114. Preprint.

10 - G. Chiavassa, B. Lombard, “Time domain numerical modeling of wave propagation in 2D heterogeneous porous media”, Journal of Computational Physics, 230 (2011), 5288-5309. Preprint.

9 - G. Chiavassa, B. Lombard, J. Piraux, “Numerical modeling of 1-D transient poroelastic waves in the low-frequency range”, Journal of Computational and Applied Mathematics, 234 (2010), 1757-1765. Preprint.

8 - S. Junca, B. Lombard, “Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave”, SIAM Journal on Applied Mathematics, 70-3 (2009), 735-761. Preprint.

7 - B. Lombard, J. Piraux, C. Gélis, J. Virieux, “Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves”, Geophysical Journal International, 172 (2008), 252-261. Preprint.

6 - B. Lombard, J. Piraux, “Modeling 1-D elastic P-waves in a fractured rock with hyperbolic jump conditions”, Journal of Computational and Applied Mathematics, 204-2 (2007), 292-305. Preprint.

5 - B. Lombard, J. Piraux, “Numerical modeling of elastic waves across imperfect contacts”, SIAM Journal of Scientific Computing, 28-1 (2006), 172-205. Preprint.

4 - B. Lombard, R. Donat, “The Explicit Simplified Interface Method for compressible multicomponent flows”, SIAM Journal of Scientific Computing, 27-1 (2005), 208-230. Preprint.

3 - B. Lombard, J.Piraux, “Numerical treatment of two-dimensional interfaces for acoustic and elastic waves”, Journal of Computational Physics, 195-1 (2004), 90-116. Preprint.

2 - B. Lombard, J. Piraux, “How to incorporate the spring-mass conditions in finite-difference schemes”, SIAM Journal of Scientific Computing, 24-4 (2003), 1379-1407. Preprint.

1 - J. Piraux, B. Lombard, “A new interface method for hyperbolic problems with discontinuous coefficients : one-dimensional acoustic example”, Journal of Computational Physics, 168-1 (2001), 227-248. Preprint.

Thesis

2 - B. Lombard, "Modélisation numérique de la propagation et de la diffraction d’ondes mécaniques", Habilitation à Diriger des Recherches de l’Université d’Aix-Marseille 2 (8 janvier 2010). Preprint.

1 - B. Lombard, "Méthodes numériques pour la propagation des ondes mécaniques et acoustiques en présence d’interfaces", Thèse de l’Université d’Aix-Marseille 2 (4 janvier 2002). Preprint.

Software

  • PROSPERO (PROgramme de Simulation de la Propagation d’ondes en milieu hétEROgène). Web page