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Abstract: The effective properties of composite materials are strongly influenced by the geometry
of their microstructures, which can be extremely complex. Most of the numerical simulations
known to the authors make use of two- or three-dimensional finite elements analyses which
are often time consuming because of the complexity imposed by the requirement of extremely
precise description of the reinforcements distribution. A numerical method is presented here that
directly uses images of the microstructure - supposed to be pericdically repeated - to compute
the composite overall properties, as well as the local distribution of stresses and strains, without
requiring further geometrical interpretation by the user. The linear elastic problem is examined
first. Itz analysis is based on the Lippmann-Schwinger’s equation, which is solved iteratively by
means of the Green operator of an homogeneous reference medium, Then the method is extended
to non-linear problems where the local stress strain relation is given by an incremental relation.

Introduction

This study is devoted to a new numerical technique to compute the local and
overall response of a nonlinear composite from images of its real microstructure.
The need for developing these numerical simulations is twofold.

First, numerous studies have been devoted to nonlinear cell calculations using
the Finite Element Method (FEM) and a list of comprehensive references (by no
means exbaustive) include Adams and Donner (1967), Christman et al (1989),
Tvergaard (1990), Brockenborough et al (1991), Béhm et af (1993), Michel and
Suquet (1993), Nakamura and Suresh (1993). But the difficulties due to meshing
and the large number of d.o.f’s required by the analysis limit the complexity of

" the microstructures which can be investigated by means of the FEM.

The present method avoids the first difficulty (meshing), and makes use of fast
Fourier transforms (FFT) to solve the unit cell problem, even in a nonlinear con-
text. FFT algorithms require data sampled in a grid of regular spacing, allowing
to use directly digital images of the microstructure. The second difficulty (size of
the problem) is partially overcome by the use of an iterative method which does
not require the formation of a stiffness matrix.
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Second, the interest for numerical simulations of the nonlinear response of com-
posites has recently been strengthened by the emergence of theoretical methods
to predict analytically the nonlinear overall behavior of composites (Willis (1991),
Ponte Castafieda (1992), Suguet (1993)). Part of the present study intends to give
precise numerical results for uniaxial or multiaxial loading paths which could serve
as guidelines for theoretical predictions.

1. Description of the method.

1.1. BOUNDARY CONDITIONS

The overall behavior of a composite is governed by the individual behavior of its
constituents and by its microstructure. Its effective response to a prescribed path
of macroscopic strains or stresses may be determined numerically via the resolution
of the so-called "local problem™ on a representative volume element (r.v.e.) V. In
this study, the "representative” information on the microstructure is provided by
an image (micrograph) of the microstructure of the composite of arbitrary com-
plexity. The image contains M x N pixels and independent mechanical properties
are assigned individually to each pixel.

The local problem consists in equilibrium equations, constitutive equations,
boundary and interface conditions. All different phases are assumed to be per-
fectly bonded (hence displacements and tractions are continuous across interfaces).
However, the displacements and tractions along the boundary of the r.v.e. are left
undetermined and the local problem is ill-posed. We choose to close the problem
with periodic boundary conditions which can be expressed as follows. The local
strain field e(u(x)) is split into its average E and a fluctuation term e(u*(x)):

e(u(x)) = e(u*(x))+E or equivalently u{x)=u"(x)+Ex

By assuming periodic boundary conditions it is assumed that the fluctuating term
u~ is periodic (notation: u* #), and the traction o.n is anti-periodic in order to
meet the equilibrium equations on the boundary (notation: on - #).

1.2. PRELIMINARY PROBLEM.

First, the preliminary problem of an homogeneous linear elastic body, with stiffness
¢?, subject to a polarization field T(x), is considered

o(x) = e{u*(x T(x) ¥x
(=t st) + ) wec ) .
dive(x)=0 VxeV, u*#, on —#

The solution of {1.1) can be expressed in real and Fourier spaces, respectively, by
means of the periodic Green operator I'" associated with ¢

e(x)=-I"*x7(x) Vx€V, or &(€)=-I%&):+(&) VE£0, £(0) =0

The operator I'° is explicitely known in Fourier space and, when the reference
material is 1sotropic (with Lamé coefficients A® et u°), takes the form:

- 1 A+t &gk
[a(8) = TTe OHEREs + Bhibety + 880t + 00 6u8) - o +’;#0) ﬁzsz r,
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1.3. THE LIPPMANN-SCHWINGER EQUATION.

The preliminary problem can be used to solve the problem of an inhomogeneous
elastic composite material with stiffness ¢(x) at point x under prescribed strain E.
For simplicity E is assumed to be prescribed, although other average conditions
could be considered as well (prescribed stresses}).

o(x) = c(x) : (e{u”(x)) +E) VxeV }

. (1.2)
dive(x)=0 VxeV, u" #, on —#

A reference material ¢ is introduced and a polarization tensor T(x}, which is
unknown a priori, is defined as

7(x) = c(x) : e(u(x)), be(x) = c(x)— " (1.3)

Thus, the problem reduces to the periodic Lippmann-Schwinger equation (Kroner
(1972)), which reads, in real space and Fourier space respectively:

e(u(x)) = -I'(x) * 7(x) + E, }
£(€) = ~T9(¢) : 7(£) VE#0, £(0)=E

where T is given by (1.3).

(1.4)

1.4. THE ALGORITHM.
The principle of the algorithm is to use alternately (1.3) and (1.4}, in real space

and Fourier space, respectively, in an iterative process, to solve (1.2):
Initialization : f(x)=E, ¥YxeV, ]
Iterate i1 : €' is known

a) cri(x) = ¢(x) : €'(x). Convergence test

b) Ti(x) = a'i(x) —-c?: si(x), y (1.5)
¢) F = F(r),

d) e*1(¢) = —T°(¢) : #(€) Y€ # 0 and E1'(0) = E,

e) e =F"1E) )

where F and F~! denote the Fourier transform and the inverse Fourier transform.

The rate of convergence of the algorithm is governed by the choice of Lamé
coefficients of the reference material. A good convergence rate was cbserved when
A% and p® were prescribed to be the half sum of the minimum and maximum value
of these coefficients in the composite (Moulinec and Suquet (1994)).

1.5. NONLINEAR BEHAVIOR.

The algorithm can be extended to the case where the individual constituents obey
an incremental law (infinitesimal strains), ¢.g. phases with an elastic-plastic be-
havior with isotropic hardening. The loading is applied step by step. At each
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loading step n, the overall strain E,, is prescribed, and the local problem is solved
for {(&n, €n, pn) via the procedure summarized below:

Tterate i+ 1: sin is known
a) Compute a":l and pin Sfrom (sin, On—1, En—1, Pu—-1)
Convergence test
b) ma(x) = oy(x) ~ " en(x), . (1.6)
¢) T =F(m),
dy (€)= ~T°(8) : 7i(€) V& # 0 and EF(0) = E,

¢) el = F-1(a) J

This procedure is similar to the one adopted in the linear elastic case. The main
difference is due to the calculation of the stress field o}, (step (a)).

2. Applications to unidirectional fiber reinforced composites

2.1. CONFIGURATIONS

The above numerical scheme was applied to predict the overall and local response
of unidirectional fiber reinforced composites. Owing to the translation invariance
along the axial direction (parallel to the unit vector ez}, the geometry and the
material properties of these composites are completely specified by the same data
on a cross section in the plane (e;, e;) transverse to the fibers’ direction.

Several configurations were investigated. In all of thern, the fibers cross sections
were assumed to be impenetrable circular disks, with identical radii. In all the
analyses presented below, the fiber volume [raction was 47.5% .

Random configurations. A prescribed number of identical impenetrable circular
fibers were placed randomly in the unit cell. Fibers intersecting the boundary of
the unit cell were treated modulo the periodic lattice, i.e. by moving the part of
the fiber which would lie cutside the unit cell to the opposite boundary (Figure
la).

Standard configurations. Configurations which are classical in FEM modelling,
namely circular fibers arranged at the nodes of a square or hexagonal lattice, were
also considered (Figure 1b).

All calculations were performed under the generalized plane strains condition
(Michel and Suquet (1993)).

2.2, CONSTITUTIVE BEHAVIQUR OF THE INDIVIDUAL PHASES

The individual phases are assumed to be isotropic and elastic plastic with isotropic
hardening. More specifically, their elastic properties are given by a Young modulus
E and a Poisson ratio v (labelled by f or m for fibers and matrix respectively) and
their plastic properties are governed by the flow rule and the Von Mises criterion
with linear isotropic hardening,

Oeg = op + Hp,
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where og is the initial flow stress (#o = -+co when the phase is purely elastic),
H is the hardening modulus (H = 0 when the phase is ideally plastic), p is
the equivalent plastic strain. This general form is specialized below to several
cases: isotropic linear elastic fibers in an elastic-ideally plastic matrix (section
3), isotropic linear elastic fibers in an elastic plastic matrix with isotropic linear
hardening (section 3), elastic-ideally plastic matrix and fibers with different flow
stresses (section 4). The specific values of the material constants are given in each
section.

3. Uniaxial transverse tension

The use of generalized plane strains allows to follow arbitrary paths in the space
of macroscopic stresses. In this section monotone uniaxial tension in a transverse
direction is considered. Fibers are assumed to be purely elastic and the matrix is
a Von Mises material

Ef = 400 000 MPa, i = 0.23,
E™ = 68900 MPa, v™ =035 o = 689 MPa.

The hardening modulus of the matrix is either H™ = 0 (ideally plastic case) or
H™ =1 710 MPa (hardening case).

23 images at a spatial resolution of 1024 x 1024 points containing 64 fibers
with a constant volume fraction (0.475) were considered. The choice of this spatial
resolution (for a given number of fibers) stems from a study of the influence of
spatial resolution on the accuracy of the results (reported elsewhere}. The square
and hexagonal configurations were also considered.

A upiaxial tension in the 0° direction was applied to each "random” config-
uration. The square and hexagonal configurations were submitted to a uniaxial
tension at 0° and 45°. The results are shown in Figure 2 (the average of the
strain/stress response of the random configurations is the thick solid line) and
summarized in Table 1.

Table 1. Uniaxial tension in the transverse plane.
Transverse Young modulus E’.}om’ flow stress a.(.;wm {(ideally plastic matrix), hardening modulus

Hhom (hardening matrix). Sample mean (s. mean) and sample standard deviations (ssd) over
23 random configurations (the sample standard deviations are expressed in percentage of the
sample means of the corresponding constants). Hexagonal and square lattice.

Random config. Hexag. lattice Square lattice
Constant 5. mean ssd oo 459 ot 45°
Ehom (MPa) 143 166  0.93% 130 655 139 580 153 190 128 600
g™ (MPa) 88.85 2.42% 87.95 79.55 98.01 79.56
"™ (M Pa) 10002  6.54% 7 100 7 420 13 400 4 760

Comments 1. The square lattice has a marked transverse anisotropy, strengthened
by the nonlinear behavior, which gives raise to different responses when the direc-
tion of tension makes an angle of 0° or 45° with ome of the axis of the square lattice.
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The low flow stress in the diagonal direction (15°) is due to the presence of a shear
plane passing through the matrix. Indeed, when a plane of shear can be passed
through the weakest phase of a composite, the shear strength of the composite is
exactly the strength of the weakest phase (Drucker (1959)). In uniaxial tension
in a direction inclined at 45° on this plane, the transverse flow stress of the same
composite cannot exceed 2a%* /+/3. This is the flow stress observed on Figure 2 and
Table 1 (207 /+v/3 = 79.56 M Pa). In conclusion, except at low volume fractions,
the square lattice should not be used to investigate the transverse properties of
transversely isotropic nonlinear composites.

2. The hexagonal lattice approaches transverse isctropy. When the maitrix is a
hardening material, the predictions obtained with the hexagonal lattice underes-
timate the stiffness of the composite, or at least are located below the average of
the predictions for the random configurations in the range of overall deformations
considered. Another computation, not reported here, has been performed up to
30% of transverse strain, with no modification in the conclusions. A similar obser-
vation was made by Brockenborough et al (1991) on another system. When the
matrix is ideally plastic, the low flow stress in the diagonal direction (45%) is again
due to the presence of a shear plane passing through the matrix. In conclusion,
the hexagonal lattice should be used with care to predict the transverse properties
of nonlinear composite systems, even for hardening matrices.

3. The deviation from the average of the transverse Young’s moduli computed
on the different configurations is small. By contrast, the deviations in the other
properties (flow stress, hardening modulus} are higher and might probably be
attributed to the combined effects of nonlinearity and incompressibility.

4. 'The inspection of the local plastic strains reveals significant differences
between the ideally plastic case and the hardening case. When the matrix 1s ideally
plastic, the strain localizes in thin bands in the matrix. In most configurations,
only a small percentage of the matrix contributes to the plastic dissipation. The
overall flow stress of the composite is observed to be in direct relation with the
? tortuosity” of these bands. This observation is consistent with Drucker’s remark
and one of the most meaningful geometrical parameter scems to be the length
of the shortest path passing through the matrix at an angle of approximately
459 (in tension, or (° in shear). When the matrix is a hardening material, the
plastic strain spreads all over the matrix. The whole matrix contributes (although
non homogeneously) to the plastic dissipation and, consequently, to the overall
strengthening of the composite. In spite of these differences, it has been observed
that the "stiffest” (respectively the "weakest” ) configurations in the ideally plastic
case rernain the stiffest (respectively the weakest) configurations in the hardening
case.

4. Overall flow surface of unidirectional composites

4.1. OVERALL FLOW SURFACE

When the macroscopic stress state ¥ is multiaxial instead of being uniaxial, the
notion of overall flow stress can be generahized into the notion of overall flow surface
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of the composite. First, the overall strength domain of the composite is defined
as the domain of overall stress states X which can be associated to a local stress
field o which is both in equilibrium with ¥ and satisfies the strength condition
(Suquet (1983) (1987)):

Phem = {5 € IR3%? | such that there exists o(x) with {¢) = I,
div(er(x)) =0, 04(x) < og(x), for every x in V}.

The overall flow surface of the composite (or its extremal surface according to Hill
(1967)) is the boundary of P**™. It depends on the flow stress of each phase, on
their volume fractions and on their arrangement but is independent of the behavior
of its individual constituents prior to the flow stress.

The general properties of Phom will not be discussed here (the interested reader
is referred to Suquet (1983) (1987)). We limit our attention to the numerical cal-
culation of P in two-phase materials with two different flow stresses, one phase
being under the form of cylindrical fibers with a circular cross section dispersed
into the other phase. The boundary of P*®™ is determined according to a pro-
cedure described in Marigo et al (1987) and Michel and Suquet (1993). In this
procedure, each individual phase is assumed to be given an elastic ideally plastic
behaviour and, for a prescribed radial direction in the space of stress, the response
of the composite along this direction of loading is computed. The overall stress
reaches an asymptotic value which is on the extremal surface.

The overall stresses under consideration consist of the superposition of a uni-
axial tension and a transverse shear (this example was first considered by Ponte
Castafieda and De Botton (1992))

E=Xi(e,®e —e2®@ez)+ L3 e3 @ e3.

The extremal yield surface lies in the plane (£, X3).

4.2. NUMERICAL SIMULATIONS

Three contrast ratios between the strengths of the two phases cré /e have been
investigated: of /e = 2, 5, 10. For one of them, ol /o = 2, the computations
were performed with 11 of the 23 configurations used i section 3. For the other
two ratios, the computations were performed one a single configuration represen-
tative of the average of the predictions over the whole set of configurations, when
aé Jod* = 2. More specifically this configuration approaches transverse isotropy
and its overall strain/stress response is close to the mean response of all the config-
urations - as well under multiaxial loading, as under uniaxial tension. The results
are shown in Figure 3 and summarized in Table 2.

In all three cases, the shape of the extremal surface ressembles a bimodal sur-
face. Bimodal surfaces have been used by Hashin (1980), Dvorak (1988), De Buhan
and Taliercio (1991), Ponte Castafieda and De Botton (1992) and several other
authors to describe the first yield or the flow surface of unidirectional composites.
The present calculations confirm the validity of this assumption or observation.
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The inspection of the failure modes at the local level reveals that the unit cell can
fail under two possible modes and confirms even further the bimodal shape of the
overall flow surface. The first mode, observable for low values of the axial stress
¥a, corresponds to shear bands in the matrix with an inclination of approximately
445" on the horizontal direction. When T3 reaches a threshold corresponding to
the vertex of the flow surface, the plastic zone spreads throughout the unit cell.
As Y5 is increased, the plastic strain tends to be more and more homogeneous and
becomes fully homogeneous when Iz reaches < gy > (Figure 4).

These numerical calculations can be used to propose a closed form expression
to the bimodal surface. Indeed, simple piecewise constant stress fields meeting
both the requirements of equilibrium and of strength can be constructed and lead
to the following inner approximation of Phem

1/2
%] < vy () = 353) " + vom (o) = 33) /7.

(4.)
The strength in shear predicted by (4.1) coincides with the strength in shear of
the matrix, ¢ /+/3, while the calculations show a small increase in strength due
to the fibers. This increase can be taken into account by medifying (4.1) into

12 ! if2
sl < vy (07 = 358) " om (G072 = (27 (4.2

k., in-plane shear strength of the composite, is the only adjustable parameter
contained in (4.2), The resulting simple expression (4.2), with k. adjusted in pure
in-plane shear, fits well with the results of numerical calculations performed on
radial paths with arbitrary orientation.

Table 2. Overall flow surface under combined axial tension and in plane shear.

0'[{/0'6" = 2 o"g/a‘an = 5 ag/ag’ = 10

Ly fod Tafei Tafal Lafol? Ly fol? Bafol
0.626 0.000 0.638 0.000 0.640 0.000
0.626 0.626 0.639 1.756 0.642 3.640
0.616 0.879 0.637 2.379 0.642 4.053
0.580 1.005 0.591 2.562 0.642 4,569
0.448 1.231 0.478 2,709 0.638 4.850
0.356 1.328 0.391 2.779 0.609 4.963
0.201 1.430 0.250 2.853 0.533 5.072
0.000 1.475 0.000 2.900 0,450 5.142
* * * * 0.184 5.255

* * - * 0.000 5.275
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a b

Figure 1. Configurations.

Periodic unit cell (framed arca) containing 16 identical circular fibers placed randomly (Fig. 1.a).

Hexagonal lattice (Fig. 1.b). The unit cell (framed area) contains 1 4 4 X i— = 2 fibers.

Fxgure 2.a: Matrix with linear hardcmng Figure 2.b: Ideally plastic matrix
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Figure 2. Uniaxial transverse tension.

Overall stress-strain response computed with the present method. Fibers volume fraction =
47.5%. Dotted lines: 23 configurations of 64 identical circular fibers placed randomly in the unit
cell, Thick solid line: average of the random configurations (AR). S0 (resp. S45): fibers placed
at the nodes of a square lattice, tension at 0° {resp. 43°). HO (resp. H45): fibers placed at the

nodes of a hexagonal lattice, tension at 0° (resp. 45%).
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Figure 3. Overall flow sur-
face of unidirectional com-
posites.

Figure 3a: o‘g/ag‘ =2
Numerical results for 11 random con-
figurations (full circles).

Present model (4.2) (dotted line). The
strength in shear £* in (4.2) is com-
puted on a representative configura-

tion.

Figure 3b: Yield surface for a repre-
sentative configuration.

*: ag/ag‘ =2

©: a[‘;/a'a" =5

. a‘l{/a'a" =10
Present model (4.2) (dotted lines).

Prediction of nonlinear bounding the-
ories (Ponte Castanieda and De Botton
(1992), Suquet (1993)) using the lower
Hashin-Shtrikman linear bound (sotid
line).
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Figure 4. Overall flow surface.

Maps of the equivalent plastic strain in a
composite reinforced by identical unidirec-
tional circular fibers. Fibers volume frac-
tion = 47.5%. U({/ao = 10. Loading con-
ditions described in sect. 4.1.

Figure 4.a, 4b, 4.c, and 4.d: equivalent
plastic strains corresponding to 4 different
extremal stresses (crosses a, b, ¢ and d in
figure 4.¢), Overall strain in the direction
of the applied stress= 1%.



