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École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal.
77455 Marne-la-Vallée cedex2

Keywords : Higher-order plate models, Reissner plate model

The classical theory of plates, known also as Kirchhoff-Love plate theory is based on the assumption
that the normal to the mid-plane of the plate remains normal after transformation. This theory is also
the first order of the asymptotic expansion with respect to the thickness [2]. Thus, it presents a good
theoretical justification and was soundly extended to the case of periodic plates [1]. It enables to have
a first-order estimate of the macroscopic deflection as well as local stress fields. In most applications
the first-order deflection is accurate enough. However, this theory does not capture the local effect of
shear forces on the micro-structure because shear forces are one higher-order derivative of the bending
moment in equilibrium equations (Qα = Mαβ,β).

Because shear forces are part of the macroscopic equilibrium of the plate, their effect is also of great
interest for engineers when designing structures. However, modeling properly the action of shear
forces is still a controversial issue. Reissner [9] suggested a model for homogeneous plates based on a
parabolic distribution of transverse shear stress through the thickness (Reissner-Mindlin theory). This
model performs well for homogeneous plates and gives more natural boundary conditions than those
of Kirchhoff-Love theory. Thus, it is appreciated by engineers and broadly used in applied mechanics.
However, the direct extension of this model to laminated plates raised many difficulties as well from
axiomatic derivations (a priori assumptions on local fields) as from asymptotic approaches.

Recently Lebée and Sab [3] suggested a new plate theory introducing a generalized shear force (the
gradient of the bending moment) instead of the conventional shear force which is the divergence of
the bending moment. This plate theory gives very good results with laminated plates [4] and was also
extended to periodic plates [5, 6].

The derivation of this new plate theory was inspired from Reissner’s ideas. However, it did not
follow exactly the original derivation from Reissner. Whereas Reissner derived a strictly 3D statically
compatible field and applied the principle of minimum of complementary energy, the stress distribution
introduced in [3] satisfied the equilibrium equations only at a high order. In the present work [7, 8],
an exactly statically compatible stress field is derived following the procedure from Reissner [9]. This
requires the introduction of the first and second gradients of the bending moment. Applying the
principle of minimum of complementary energy leads to a higher order plate theory with at most 15
kinematic degrees of freedom.

Even if this new plate theory called “Generalized Reissner” plate theory involves a rather large number
of degrees of freedom, its derivation from the rigorous application of the principle of minimum of
potential energy presents a number of noticeable advantages. First, the definition of generalized
displacements as function of 3D displacement is clearly established. Second, it is possible to reconstruct
a 3D displacement localization as function of plate variables which is consistent energetically. Third,
the minimum of complementary energy ensures that this displacement field is actually an upper bound
of the exact 3D displacement in the sense of external work. Fourth, when the plate is simply supported,



Séminaire LMA, 23 May 2017 CNRS

it is illustrated empirically that the deflection of this new plate model converges faster with respect
to the slenderness of the plate than the Kirchhoff-Love plate model. Finally, the Bending-Gradient
theory may be fully recovered, locking the higher order kinematic degrees of freedom.
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