Analyse 1

Planche 1bis - Suites récurrentes

EXERCICE 1

On considère la suite $(u_n)_n$ définie par $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{n+2}e^{u_n}$. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a $0 < u_n \le 1$. En déduire que pour tout $n \in \mathbb{N}$ on a $u_{n+1} \le \frac{e}{(n+2)}$, puis la convergence de $(u_n)_n$.

EXERCICE 2

On considère la suite $(u_n)_n$ définie par $u_0 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2 - e^{-u_n}$. Démontrer par récurrence que $(u_n)_n$ est positive et décroissante. Que peut-on en conclure?

EXERCICE 3

Soit la suite $(u_n)_n$ définie par récurrence par : $u_0 > 2$, $u_{n+1} = u_n^2 - 2$.

- 1. Montrer que $u_n > 2$ pour tout $n \in \mathbb{N}$.
- 2. On suppose que la suite $(u_n)_n$ converge. Quelle est sa limite l?
- 3. Montrer que la suite $(u_n)_n$ est croissante.
- 4. En déduire la nature de la suite $(u_n)_n$ (convergente ou pas).

Exercice 4 (suite arithmético-géométrique)

Soit la suite (u_n) définie par $u_{n+1} = au_n + b$ où $a \in \mathbb{R} \setminus \{0, 1\}$ et $b \in \mathbb{R}$.

- 1. Quelle est la seule limite possible l de la suite $(u_n)_n$?
- 2. Soit $(v_n)_n$ la suite définie par $v_n = u_n l$, $\forall n \in \mathbb{N}$. Démontrer que $(v_n)_n$ est géométrique. En déduire la convergence ou divergence de la suite $(u_n)_n$ en fonction de a.

EXERCICE 5

Soit a et b deux nombres réels strictement positifs. On définit les suites $(u_n)_n$ et $(v_n)_n$ par $u_0 = a$, $v_0 = b$, et pour tout entier $n \ge 0$ les relations $u_{n+1} = \frac{1}{2}(u_n + v_n)$, $v_{n+1} = \frac{1}{2}(u_{n+1} + v_n)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, les nombres u_n et v_n sont positifs et inférieurs au $\max(a, b)$.
- 2. Établir une relation simple entre $u_{n+1} v_{n+1}$ et $u_n v_n$, et en déduire l'expression de $u_n v_n$ en fonction de n.
- 3. Montrer que les suites $(u_n)_n$ et $(v_n)_n$ ont une limite commune l.
- 4. Étudier la suite $(u_n + 2v_n)_n$ et en déduire la valeur de l.

EXERCICE 6

Soient $a, b \in \mathbb{R}$ tels que 0 < a < b. Posons $a_0 = a, b_0 = b$ et pour $n \ge 0$

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
, $b_{n+1} = \frac{1}{2}(a_n + b_n)$.

- 1. Montrer que les suites $(a_n)_n$ et $(b_n)_n$ convergent et ont la même limite l que l'on calculera en fonction de a et de b.
- 2. Montrer que pour tout $n \in \mathbb{N}$ on a

$$b_{n+1} - a_{n+1} = \frac{(b_n - a_n)^2}{2(a_n + b_n)} .$$

En déduire que pour tout $n \geqslant 0$ on a $0 \leqslant (b_{n+1} - a_{n+1}) \leqslant \frac{(b_n - a_n)^2}{4a}$ et $(b_n - a_n) \leqslant 4a \left(\frac{b-a}{4a}\right)^{2^n}$.