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G BOUCHITTE AND P SUQUET
Equi-coercivity of variational problems: the

role of recession functions

Abstract: This paper deals with the coercivity of functionals under the form F' — AL
where F is a convex and coercive function, L is a linear form and X is a scalar
parameter. The equi-coercivity of a sequence F** — AL, where F* is equi-coercive and
converges to F, is considered. These questions are shown to be strongly related to
the variational problem Inf {Foo(u), L{u) =1} where F., is the recession function
of F. Convergence of recession functions is also examined. Several applications to
plasticity and capillarity are given,

1. OQutline of the paper

This paper deals with variational problems modelling several physical situations
which can be posed in the form:

Inf {F(u)- \(x)}, (L.1)
ue X

where X is a Banach space, F is a convex functional, L is a linear form and A is a
scalar parameter. We look for the values of A for which the Infimurn in (1.1} is finite
and reached. A well known sufficient condition ensuring that the infimum is finite
is the coercivity of the functional F — AL at infinity with respect to ||uf|, in a sense
specified later. The case of a quadratic F is standard and the growth of F — AL at
infinity is governed by the growth of F only. In the cases of special interest for us, F
has only a linear growth with respect to [|u|} at infinity and the behaviour of F' — AL
for large ||u|| is not a straightforward consequence of that of F.

Typical examples of this situation are provided by capillarity, quasi-linear equa-
tions under nonlinear boundary conditions and plasticity. Let us precise the latter
case which has important applications in Mechanics. The equilibrium problem of
an elasto-plastic body obeying Hencky's law of plasticity and submitted to loads
proportional to a scalar parameter A, can be formulated in term of displacements as
a minimization problem:

Inf { fn j(z,e(u)) dz — ,\L(u)} . (1.2)

u=0onTly
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where {1 is a bounded open set in RY, u: @ = R is a vector valued field (rate of
displacement), e(u) is its deformation tensor, I'y is the subset of the boundary dQ
where the body is fixed. j(z, E) is convex with respect to E and satisfies:

ko (|EP| + [trE|* — 1) < j(z, E) < ky (|EP| + trEP +1), (1.3)

where trE and ED are the trace and the deviatoric part of E (notations will be
specified in section 3). It is important to note that § has only a linear growth at
infinity with respect to E (see the term |ED|). The linear form L reads as:

L{u} = -[1 fou dz +fr gou ds. (1.4)

where fp are the body forces and gq are the surface loads on I'y = 892 ~ Iy

The discussion of the limit values of the load parameter A for which the infimum
in (1.1) is finite, is known as the limit load problem and has been widely discussed
in the literature (TEMAM (15] for a mathematical account and SALENCON {14]

for a mechanical point of view).

The aim of the present paper is to discuss variational problems such as (1.1)
with weak growth condition. In section 2 we discuss, for a coercive functional F, the
coercivity of the functional F' — AL. Under specific assumptions, the coercivity of
F — AL, where ) is taken to be positive in order to fix ideas, is ensured for any A
strictly smaller than X:

A< A=Inf {Fo(u), L(u)=1}. (1.5)

F_, is the recession function of F defined in section 2. A similar inequality holds for

. negative A’s.

In section 3 we discuss the relation between coercivity and I'-convergence. More
specifically let (F*).»o be a sequence of convex functionals converging to F, then the
equi-coercivity of the sequence (F* — AL).»p is ensured by (1.5). To illustrate the
objective of this section, consider the variational problem (1.2) arising in plasticity,
where j(z, E) is replaced by an e-periodic {with respect to the variable ) function

j*(z, E):
Inf {./;ij'(z, e(u)) d::—AL(u)}. ‘ (1.6)

u=0o0nT,

When ¢ goes to 0, (1.6) is a sequence of variational problems describing the equilib-
rium of nonhomogeneous elasto-plastic composites, e-periodic assembly of different
constituents. The question answered in section 3 is the determination of the values
of A for which the infimum in (1.6) is finite for ¢ small enough, by means of an
homogenized problem..
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Section 4 deals with the D-convergence of recession functions. Coneider a se-
quence of functionals (F*)>q converging to F. We establish that, under appropriate
hypotheses, the sequence of recession functions Fg, converges to Fan. When applied
to the functional of plasticity (limit load problem) our result gives directly an ho-
mogenization result for incompressible media. It does not require any approximation
procedure for admissible functions satisfying the constraint div{u) = 0.

2. Coercive Functionals

2.1. The main result.

o In the sequel (X, || . |j) will denote a Banach space, which can be endowed with a
topology 7 such that:

closed balls in (X, ]| . ||) are T — compact. (2.1)

Typical examples of this situation considered in the sequel are:

a) X is a reflexive space (often W'?(Q) with p > 1), 7 is the weak topology on
X.

b) X = BV() or BD(Q) (see definitions of these spaces in (3.16) (3.17)), 7 is
the L? topology (1 < p < (Nf(N - 1)).

» F: X » R = RU {400} is a proper, convex, r-lower semi-continuous (r-l.s.c. in
abbreviated form) functional on X. F, denotes its recession function defined as:
Foo(u) = Sup %F(tu + ug), where ug € dom(F). (2.2)
t>0

The definition of Fi, does not depend on the choice of ug and the supremum in (2.2)

can be replaced by  lim
t — 400

¢ Among all possible definitions of a coercive functional (ATTOUCH [1], BAIOCCHI
et al [2]) we shall choose the following one:

Definition 1. F: X — IR is coercive iff:

lim F(u) = +oo.
lull= +eo

A few simple relations between properties of F and Foo will be useful in the sequel:

Proposition 1. Let F: X — R be a proper, convex and r-lower semi-continuous
functional. Then:
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(i} Fu is proper, convex and r-lower semi-continuous.
(ii) F}, =X —gom(r+) and :
Vu,v €X xX: Flu+v) < Flu)+ Foolv). (24)

(ii) Inf F{u)> —oco=>Fy 20.
ue X
Equivalence holds under the additional assumption that dom(F*) is closed.

(iv) I F is coercive then F, is coercive, Foo(u) > 0 for u # 0, and:

—c0 < Inf F{u)= Min F(u) < +oo.
veX ue X

Comment: The following notations have been used:
dom(F) = {u € X, F(u) < 4+oc}, cl-dom(F*)= dom(F*),

0 fuek
Ix(u)=
+00 otherwise

Proof of Proposition 1: Points i) and ii) are classical (see e.g. [8]).

In order to prove iii), note that:

Inf F(u)=-F*(0).
ue X

Therefore

Inf F(u) >—00 & 0¢€ dom(F‘) o Idom(F') < I{o}
ue X

= (ldmn(}"")yt 2 (l'{n})‘ s Fo>0.
Equivalence holds under the additional assumption that dom(F*) is closed.

In order to prove iv) note that, according to (2.4):
Yup € dom(F), Foo(u) 2 F(u+ uo}~ F(uq),
and therefore that F., satisfies (2.3) and is coercive. The coercivity of F implies

Inf F(u) > —oo.
ue X
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Indeed it is deduced from the coercivity condition that:

Inf F(u})= Inf F(u),
ue X ve B

where B denotes a closed ball of sufficient radius in X. By virtue of (2.1), Bis a
r-compact set on which the r-lower semi-continuous functional F attains its infimum
which is therefore a minimum. This minimum value is finite since F is proper. It
remains to prove that Feo(u) > 0 for u # 0. Note that for every u and up in X
and every positive ¢, ii) together with the positive homogeneity of degree one of Fi,
yields: -

Foo(u) 2

Flug + tu) — F(uo)
: .

If Foo(u) =0, we obtain:
F(un +tu) < F(uu) Vi > 0, Yuy € X.

-

This last inequality is in contradiction with the coercivity and the properness of F.
This completes the proof of Proposition 1.

The main result of this section is the following:

Theorem 1. Let (X, || . ||) and r satisfy (2.1). Let F be a proper, convex, coercive
functional defined on X, and 7-lower semi-continuous. Let L be a linear r-continuous

form on X .Then i) and ii} are equivalent:
i) F — ML is coercive,

ﬁ)_,&(,\(.iwbere:
X = Min {Folu), u € X, L(u) =1},

A= «Min{F.(u), u € X, L(u) = —1}.

Comments: Theorem 1 is a particular case of Theorem 2 below, and will not be
proved here, although a direct proof can be given. We just comment on the fact that
the definitions of A and A contain a Min and not an Inf. Indeed it can be deduced
from Proposition 1 that Fo, is a proper, convex, r-l.s.c. and coercive functional.
Since L is 7-continuous the functional

G =Fot g =1p

is also convex, coercive and r-ls.c. (but not necessarily proper). Therefore its
minimum value A is reached.
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2.2. Examples. 1. Quasi-linear equations.

Consider the following problem on 2 bounded open set 2 of R ¥, with a regular

boundary 81 : ,
Fe-Au+f{u)in

{2.5)

Su
an

where f és.in L*(f), g is in L(69), @ and v are two maximal monotone graphs on
IR exhibiting the following properties:

g€ 5~ +v(u) on 8

0€8(0), 0€+(0), O0isan interior point of Im( ). (2.6)
A weak solution of (2.5) is searched:

i) Au+ fe L'(Q) and Au(z) + f(z) € Blu(z)) ae. z €,

" a
i) ¢g-— a—: is a L'(02) selection of v(u)

- du :
(for the definition of c')_: in the sense of distributions see DAUTRAY & LIONS (9]
ch. 2 p. 583).

Define in IR U {—oc0} U {400} :
[ﬁ-—v ﬁ+] = Im(ﬂ)1 [7—' 7+] = Im(‘y)!

and let j5 and j., be primitives of # and  vanishing at 0. Then 7s and j., are convex,
Ls.c. and non negative functions. The variational form of (2.5) reads:

Inf  {F(u) — L(u)}, (2.7
u€ HY{(Q)

where:

1
F(u) = L --2-[V1.L|2 dr +[]jﬂ(u) dz +/an Jo(u) ds , |

L(u)=/nfuda:+-/anguds.

X = H'(Q), 7 is the weak topology. It is straightforward to check that L is 7-
continuous and F is proper, convex, 7-ls.c. and coercive. A sufficient condition
ensuring that the variational problem (2.7) possesses a solution is that F — L is
coercive, which, according to Theorem 1, is equivalent to:

1< Inf {Fao(u), L(u)=1}. (2.8)

u
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It is readily seen that Fi, reads:

{ fn (78)oo () dz + [50 (4+), (u) ds if u is constant on
Fo(u)=

+oo otherwise

(2.8) is hence equivalent to a condition already derived by different means in BENI-
LAN et al (3] :

puil+ a0l < [ faz+ [ gds<piinl+nion

2. Capillarity problem.

The 7-continuity of L and the r-lower semi-continuity of F' cannot be removed
from the assumptions of Theorem 1. The capillarity problem provides a counter
example when L is not r-continuous. Section 3 contains a discussion of the modifi-
cations to bring to Theorem 1 to cover the case where F is not r-ls.c..

The determination of a liquid free surface as the resultant of surface forces,
gravity forces and boundary adhesion, can be reduced in many situations to the
following variational problem on a bounded open set Q of R" with a Lipschitz

boundary:

Inf {j JITTVaF dz + 52‘-[ luf? de - ,\j u ds}. (2.11)
0 ' 0 an

ue Whi(f)

When A = 0, minimizing sequences of (2.11) are bounded in W-!(1), hence also in
LN/N=-1)(Q). A natural choice for the pair {X,7) is consequently X = Wh1(Q), r
= weak topology of L¥/(N=14(Q), and :

k
Foy= [ VIFWl bty [P ds L= [ was @)

Note that L is not r-continuous. A straightforward computation leads to (with
k> 0):

if u=0a.. in {2,

0
Foo(u) = {
+o0

otherwise
Therefore:

Inf {Foo(u), L(s) = 1} = Inf {Foo(u), L(u) = =1} = +o0,
u u
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and an erroneous use of Theorem 1 in this case would imply that F — AL is coercive
for any value of A, while it is well known (MASSARI and MIRANDA {13]) that
Inf{F — AL} = —oo for |A| > 1. The correct result will be derived in Section 3.

3.Equi-coercivity of a sequence of functionals

3.1 Preliminaries. Throughout this section (X, r) satisfy (2.1).
Let F¢ be a sequence of functionals mapping X into IR.

Definition 2. (F*),>0 7 —I' converges to F iff :
i) For every u in X, and every sequence u in X 1 -converging to u,

F(u) < liminf F*(u®). (3.1)

e—{

i) For every u in X, there exists a sequence u® in X r-converging to u such that:

F(u) 2 limsup F*(u*). (3.2)

e— 0

It is important to note that F is r-Ls.c. , even if the F*'s are not. For any functional
F: X — R its relaxed functional ¢l — F is defined as:

cl — F =Sup {G, G(u) < F(u) forevery uin X, G is 1 l.s.c.} (3.3)

Remark 1. An interesting property of I-convergence is that F* and cl — F** have the
same I'-limit. Moreover cl — F is the I'-limit of the sequence F* = F.

Definition 3. The family of functionals (F*).~¢ is said to be equi-coercive iff:
(F*(u*))¢>0 bounded in R = (u*),5p bounded in (X, |.|]). {3.4)

Proposition 2. Let (F¢).o be a sequence of equi-coercive functionals v — I'-
converging to F. Then F is coercive.

Proof of proposition 2, Assume that F is not coercive, i.e.:

Ju,eX,IMeR, lim |u,] =400, F(u,) &M
i =+ 400

It follows from point ii) of the definition of I-convergence that, for every n, there
exists a sequence {uf,),5¢ such that:

r;limu:, = up, limsup F*(u;) < Flu,) < M.
€0 €0
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Using the r-lower semi-continuity of the norm (which is a consequence of assumption

(2.1)), we obtain:
Liminf [ uj, (2] ua || -

e— 0

Hence the doubly indexed sequence aj, :
af, = Sup {-—1—, M- F‘(u:_)} ,
Il |

satisfies:
limsup limsupay, < 0.
n-—++oo €60

By the diagonalization lemma (ATTOUCH (1] p.33), we can choose a sequence

(ﬂ;)g)o such that : .
lim n,=+oco, limsupa; <0.
e—=0 e—0

Define v = u}, , then:

lim || v°} =400, limsup F*(+*) £ M,
e—0 e—0

which contradicts the equi-coercivity of (F*).»0. Q.E.D.

A classical result allows to pass to the limit in the sequence (Inf(F*))¢>o. More
specifically (ATTOUCH [1] ):

Proposition 3. Let F* be a sequence of equi-coercive functionals on X, such that
(F*)¢>0 T-converges to F. Then:

lim ( Inf F‘(u)) = Min F(u). (3.5)
e—=0 \uelX ue X
Moreover if u® is an approximate minimizer of F*:
F'(u*) £ InfF* +¢,
then any cluster point u of (u*)¢>o for the topology T is a minimizer of F:
u € Argmin(F).

Remark 2. If moreover F is proper, and since it is coercive (see Proposition 2}, it
results from Proposition 1 ifi) that Min(F) is finite and consequently that F* is
uniformly bounded from below.
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3.2 The main result.
The main result of this section is:

Theorem 2. Let (F*).>o be a sequence of proper, convex, equi-coercive functionals
on X, r — [-convergent to F. Assume that (2.1) holds and that F is proper. Then

i) and ii) are equivalent:
i) (F° — AL)>¢ is an equi-coercive sequence of functionals,

i) A< A< X where:

X = Min {Foo(u), u € X, L(u) =1}, }
(3.6)

A= —Min {Fo(u), u € X, L{u) = -1}

An interesting consequence of Theorem 2 is obtained when F* is taken to be constant
and equal to F. Since the F*’s were not assumed to be r-ls.c. in Theorem 2 we
obtain a useful generalization of Theorem 1:

Corollary 1. Let F be a proper, convex and coercive functional on X. Then i) and
i} are equivalent:
i)F — AL is coercive,
H)A<A<Iwherc:
A = Min {(c] = Floo(u), u € X, L{u) =1}, }

A= —Min {(c]l — F)eo(u), u € X, L(u) = -1}

Proof of Theorem 2 ; Preliminaries.

We can assume without loss of generality that F*(0) = 0. Indeed if this assump-
tion is not met, according to the fact that F is proper, there exists up in X where F
is finite. By point ii) of the definition of I'-convergence, there exists a sequence (uj)
r-converging to u and such that F*(u}) converges to F((ue). Then set:

G (u) = F*(u+ug) — F*(u5),
and note that G*(0) = 0. It is straightforward to check that G* I'-converges to G :
G(u) = F(u + uo) — F(ug), with G(0) =0.

Moreover it is easily shown that the equi-coercivity of {G*)¢»0 is equivalent to that
of (F*)¢>o and that Ge = Foo. Hence it is sufficient to prove theorem 2 for the

sequence {G*)>0.
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For simplicity we shall restrict our attention to positive A’s, and consider only
the inequality A < A, :

Set F§ = F*— AL and note that since L is r-continuous, (F¥).>¢ v —'-converges
to F) = F — AL. Note also that, since L is linear:

(Fa)oo = (Foo)y = Foo — AL. (3.7)

First step. Proposition 3 applied to F} proves that F) is coercive. Therefore, apply-
ing proposition 1 point iv) to F\, and after due account of (3.7), we obtain:

Foolu) = AL(u) >0 VYue X — {0}, (3.8)

Since X is a minimum (and not only an infimum), it is reached by % such that:

-

F(a) = -X! L@)=1

With this specific choice of u in (3.8) we obtain the desired inequality A < X .

Second step. Let us prove that ii) implies i). Assume that

A<3, (3.9)

and that (F}).>0 is not equi-coercive, i.e. :

u'eX,IMeR, lim |u'f=+00, Fi(u)<M, ie.: (3.10)
e —0
Fe(u®) < M + AL(u). (3.11)

Note that
lim L{u‘) = +oo,
e—0
otherwise (3.11) and the equi-coercivity of (F*}.no would prove that {(u®),5¢ is a
bounded sequence. Set :

v'=m- t=fu .

Since (v¢)(>¢ is a sequence of norm 1, it is relatively r-compact (assumption (2.1))
and it contains a subsequence, still denoted (v*) r-converging to an element v of X.
It follows from (3.11) that:

F(tv¢) < M + M L(ve). (3.12) -
' 41



Let ¢ be a fixed positive scalar, then for ¢ small enough ¢ is smaller than ¢*, which
tends to +oo0, and by convexity of F'* (recall that F*{0) = 0):

.4 € 13 e, €
) (PO My,

By point i) of the definition of I'-convergence:

@ < liminf m < AL(v). (3.13)
€—0

Take the supremum of the left hand side of (3.13) on positive ¢ to obtain:
Foo(v) < AL{v). (3.14)
F is positive (Proposition 1 point iv)}, and it follows from (3.14) that L(v) is

positive (recall that we assumed A > 0). If L(v) does not vanish we set:

w= -v—, te Lw)y=1,

L(v)

and since F, is positively homogeneous of degree one we derive from (3.14):
X € Foo(w) € A,

which contradicts assumption (3.9). Therefore L(v) = 0, and by (3.14) F(v) = 0.

It follows from Proposition 1 iv) that v = 0. Coming back to inequality (3.10) we

obtain after due use of a previous remark ( lim L(u‘} = +oc), associated with the
e—0

s Flu) M
F (g ) < pod < 24

By equi-coercivity of (F*).»o we deduce that :

convexity of F*

L(u)

is a bounded sequence in X,

and therefore that (since u® = t“v*):

vt )
I =2 bounded sequence in X. (3.15)
(3.15) is in contradiction with:
Jlv*l=1and Lim L(v%) = L(v) =0. Q.E.D.
e 0
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3.2 Examples.

In the forthcoming examples we shall use the following functional spaces::
: 3 _anipoy
BV(Q) =13 fe L'(Q), . EM'(), i=1,N¢, (3.16)

BD(Q) = {u = (ui)i=1,n, ui € LI(N), &;(u) € MY(Q)}, (3.17)

LD(®) = {u = (w)im1.vs wi € L(Q), e(u) € (D)),
where M'(Q) stands for the space of bounded measures on 2. Classical results
establish that BD(§2) (respectively BV(£2)) has the following properties:

i) BD(R), respectively BV(§2), is the dual of a Banach space, and therefore, can
be endowed with a weak » topology for which bounded sets are relatively compact
sets. However BD(52), respectively BV(£}, is not a reflexive space.

il) There exists a trace application mapping BD({2) onto L0V, respectively
mapping BV(Q) onto L'(89), continuous for the strong topologies of these two
spaces. However this trace application is not continuous for the weak * topologies
of these spaces.

iii) BD(£2), respectively BV(R2), is continuously embedded into LP(£2)", respec-
tively LP(f2), for 1 < p € N/(N - 1), with compact embedding for p < N/(N —1}.

We shall also make use of functions of a measure ([12], [7]). Leth: @xR? - R
be a Borelian function, positively homogeneous of degree 1, j.e. such that:

h{z,A\E) = A(z,E) VA>0, VYzeQ, (3.18)

then for every Borelian measure y : {} — R* and every positive measure 8 such that
y is absolutely continuous with respect to 8,

dy dys 1
b= 59 where 7 € L'(Q,0),

the integral: 4
i
— 3.19

does not depend on #. The common value of all these integrals is denoted:

f h(z, 1). ' (3.20)
by
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1. Plasticity. The equilibrium problem of an elasto-plastic body obeying Hencky's
law of Plasticity and submitted to a loading proportional to a scalar parameter A,
can be formulated in term of displacements as a minimization problem:

Inf { /n #*(z, e(u)) dz — AL(u}} . (3.21)

u=ugonly

where Q2 is a bounded open set in R, u : @ — R” is a vector valued field (rate of
displacement), e(u} is its deformation tensor, I'y is the subset of the boundary 85

where the body is fixed. 7(z, E) = J(':":-, E) is e-pertodic with respect to the variable
z

j(z + €T, E) = j*(z,E) VT € ZV. (3.22)
7 is assumed to be convex with respect to E and to satisfy:
ko (|EP| + trEI* - 1) < j(y, E) < by (|EP| + |trE]® +1). (3.23)

L(u) is the linear form:
L{u) = j fou dz +f gou ds,
- Ja r,

where f € (L¥(0))", g0 € (L=(T1))" and T, = 80 — Ty. The function j, which
plays the role of a non quadratic energy, can be further specified when the material
obeys Hooke's law in the elastic regime with Lamé coefficients A and z, and Von
Mises criterion with shear strength k in the plastic regime (TEMAM [15] p 76)

iy, E) = ¢(y, Tr(E)) + v(y, EP), (3.24)

where k(y)

(WIE? if |E| € —=Y1_

e(y)|E|* if |E| V2u()

1!’(!1, E) = ’
ky)? .
V2| E| - Sl )othervnse
( T) (3'\(3)';2#‘(9)) (T)Z‘

and where the following notations have been used

3
TrE=) Ei, Ef= =5~ 6, |E = z E}  (in IR®).

i=1 ‘ ij=1

Let up € (H”z(l"o))N, and define on BD{§}):

{ Jo 7t(eu)) dz if u € LD(R) and u = up on Ty,
(u) = (3.25)

400 otherwise.

Let j4™(E) be the homogenized density of energy:

jhom(E) = Inf , B+ e(w))d
() wen;mmnﬂ{””fjw ()i}

H..,(]0,1[) stands for the periodic vector fields with components in H(]0, 1M,
and define for every u in BD(Q):

Thom () = / hom(e(u)) + j RO (49 — 4) @, 1) g (3.26)

The integral over  of j2°™(e(u)), when e(u) is a measure, is understood in the
following sense:

/“mmm—f*“(w»h+f“”MM)

where e,(1) and e,(u) denote respectively the absolutely continuous part and the
singular part of e(u) with respect ta the Lebesgue measure dz, and where the integral
of jEo™(e,(u)) over 2 is understood in the sense of functions of a measure (see (3.20)).

Theorem 2 may be applied with the following choice:
X = BD(Q), r = strong topology of LM{Q)" (p < N/(N - 1)).

As previously stated by BOUCHITTE (4] (extended in [11]), J;, 7-I-converges to
Jho™, Moreover it is easy to check that J3, is equi-coercive on BD(§1) provided
that:

mes(Ty) > 0, 0 < ky < k(y) < k1 < +oo Yy €]0,1[V. (3.27)

It remains to check that L is r-continuous and this turns out to be true only if g¢ = 0
orif Ty = @, i.e. if the body is not loaded on its boundary. In this case we recover
a result already derived in BOUCHITTE (4] by different means:

Proposition 4 : With the previous notations assume that go = 0 or that I’y = 2.
Then the sequence of functionals (J¢, —AL).>o is equi-coercive in BD(QQ) if and only
if:

ACA<H,

45

[P

rmes

A LTRE W uTa e - T

e DI A

T



where: _
A = Inf {J&OM(u), L{u) = 1} R
(3.28)
A= —~Inf {J2™(u), L{u) = -1}, }
and

Ja™ () = j; jhem(e(u)) + /l: . jhem(—u @, n) ds if u € BD(Q).

. Remark 3: The homogeneous case considered in TEMAM [15] can be recovered from
! Proposition 4. For this purpose consider j(z, E) = j(E) = j*°™(E) independent of
¢. Then (3.28) defines the classical limit load problem.

When I'y # @ and go # 0, L is no more r-continuous and Proposition 4 does not
hold (see a counterexample in [6]). This difficulty can be overcome by considering
separately the contribution of u inside §? and on the boundary #Q. The technical
details will not be given here, since the next example is similar in its principle. The
interested reader is referred to [5] {6].

2. Capillarity problem (second part).

In the capillarity problem considered in section 2.2 recall that:
X = wh(Q), r = strong topology of L?(§1), L(u) =/ uds,
an

As noted previously, the linear term L is not r-continuous. Therefore the contribu-
tions of u inside 2 and on 9§} are considered separately. More specifically set:

X = BV(Q) x M'(392),
r = weak topology of L¥/(V=1((}) x weak * topology of M%),
F(u) if u € BV(QQ) and u = uds on 882,
(u,p) =

+eo otherwise

Ly, p) = .[m dy.

F is defined in (2.12). Note that & is proper, convex and 7-l.5.c. on X and that 4
is now r-continuous. Moreover it is easy to check that:

) Inf (F@-ALw) = Inf {&(um) - A w)
u e WHY(Q) (u,u) € X

i) F— AL coercive on W) & & — AL coercive on X.

By virtue of Corollary 1 :
F — AL coercive ¢ |A] < Inf {(®)oo(u), L(u)=1}.

The difficulty relies in the computation of the r-closure of ¢, which is performed by
duality, The conjugate function of & on L¥() x C*(81) reads as: :

v = wt { [ (<-4 gpinf) ),

Po-1
where the infimum is taken over (pg, py ) such that:

po—div(p) = fin @, ;)] < 1ae inQ, prn=yondQ

Since @ is convex and proper its T-closure is equal to $**. Using the same technical

arguments than in-BOUCHITTE & SUQUET (6}, we obtain:

k
el - ®(u,u) = .[n V1i+ |Vaulidz + /n |V.u| + 5/‘; |ul?dz + -[an h(z, 4),

where h(z,.) = (Io()” - z = C(z) is a L.s.c. muiti-function and C(z) is the closure
of the set

{zeR,Ap€ c%aN) : ¢(z) = 2,
30¢€ L2(N): [6(z)] <1 ae. in Q, div(f) € L¥(R), b.n = ¢ on 30}

By symmetry there exists a Ls.c. function a(z) such that C(z} = {|z] € a(z}} and
therefore h(z,s) = a(z)|s| . The computation of (cl — &)oo is straightforward:

Jopa(z) dlul fu=0inQ,
(Clq)m =

+o0 otherwise.
Hence: _
A= Min a(z).
x € 9%

When the boundary 99 is C! it is easy to check that a(z) = 1 and X = 1. How-
ever when the boundary 82 is only piecewise C!, i.e. exhibits corners, a lengthy

computation leads to:
(1 + n-(w).n+(s)) 1
afz) = | ————> )
2
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Figure 1

where n_(z) = ny(z) at points z where the outer normal vector is uniquely defined,
and takes two different values at corners. The critical value of A is:

A= Min (sin(e(z))},
T €N
which is a result already derived by MASSARI & MIRANDA [13] by different means.

4. I-Convergence of recession functions

4.1 Preliminaries

Theorems 1 and 2 put forth the role played by recession functions in variational
problems. A natural question arises:

Consider a sequence of functionals ( F*)¢so which I-converges to a functional F, does
the sequence of recession functions (F% ).o (when they can be defined) I'-converge
to F? |

A weaker, but related question, is:

Let L be a continuous linear form, does the sequence of infimas

X' = Inf {F%(u), L(u) =1}, (4.1)
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converge {o _
A= Inf {Fgo(u), L(u) =1} ? (4.2)
u

Without stronger assumptions the answer to these questions is negative as illustrated
by the following example. Consider on X = R" the sequence:

F(u) = [lull + efluil?,

which I'-converges to F(u} = l|lu|. Note that F%, = I(gy which I-converges to Lo},
but Foo = F = ||.{| . Consider the linear form L(u) = (u*, u) where u* € RY. Then:

X =Inf{FS(u), L(u)=1}=+oo,

but 1

A=Inf{F(u), L(u)=1}= "—u;n - (Q.E.D.)
However the answers to the previous questions are positive under additional hy-
potheses. Assume that:

X is compactly embedded in a reflexive Banach space Y, (4.3)

and that 7 is the topology induced on X by the weak or strong topology of ¥ (so
(2.1) holds). By convention we extend every functional defined on X to ¥ by giving
the value +o0o in Y-X.

Theorem 3 . Let X satisfy (4.3)., and let (F*).»0 be a sequence of convex, proper
and ls.c. (in X strong) functionals mapping X into R such that the following
hypotheses are satisfied:

i) InfF¢> —oo0,

ii) (F*)e»e T-T'-converges to a proper functional I,

iii}  for every sequence (f¢).»o in Y such that (F¢)*(f¢) < +oo, then
(F)*(f) < +oo for any weak cluster point f in Y* of (f¢}e>o.

Then:
Fi, r =T — converges to Fi,. (4.9)

Comment: Theorem 3 does not require that the F*'s are Ls.c. for the topology 7
but only for the strong topology of X. This assumption is sufficient to define Fe,

properly.

Proof of Theorem 3. Point i) of definition 2 is straightforwardly satisfied. Indeed,
as in the proof of Theorem 2 we can assume without loss of generality that F*(0) =

49

- p——



F(0) = 0. Then for every v in X, for every sequence (v*)»o T-converging to v and
everyt > 0:
L4 €
liminf F%,(v*) > liminf @ > ﬂ(ti‘il (4.5)
e—0 e—0
Then (3.1) is deduced by taking the supremum over ¢ in the right hand side of (4.5).

Let us now prove (3.2). According to Remark 1 in section 3 we can assume
that F'¢, hence Ff,, is r-ls.c. on Y, since it can be replaced by its r-closure with no
modification of its T-limit. We use a duality argument (duality ¥,Y*) in order to
establish point ii) of the definition of I'-limit (Definition 2). Following ATTOUCH
([1] p.271) the desired assertion:

Yu €Y, 3u* 5 u, Foo(u)> limsup FE (u®), (4.6)
c— 0

is a consequence of the two assertions:

IfHeY", (FL) (fo) < +oo, (4¢.7)
Vit — fin Y* weak, (F)'(f) < liminf (FS)* (). (4.8)
e—0

To check (4.7) note that :

(Fo)" =Ty _ dom (F*)*

ie.
(F&)" =0 or +oo0.

But 0 belongs to dom (F¢)* since Inf F** > —oo (assumption i)). Therefore
(Fo) (0) =0.

To check {4.8) assume that the right hand side of (4.8) is finite (otherwise there is
nothing to preve). Then there exists a subsequence, still denoted f*, such that:

fe€ci—~dom(FS)" and f = f in Y™ weak,
and a sequence g° approximating f¢ in ¥ weak such that
g €dom(FL)", ¢°— finY"* weak.

We deduce from a.asu-mpt.ion iil) applied to g%, that f (weak cluster point of ¢*)
belongs to dom(F*) i.e. (Foo)® (f) = 0. Q.E.D.
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Corollary 2. Let L be a linear continuous form on Y, let (F*)>0 be as in Theorem
3 and equi-coercive. Then :

lim Inf {Fi(u), L(uv)=1}=Inf {Fu(u), L(u)=1}. (4.9)
e—0 u u
Proof of Corollary 2. As previously we can assume with no loss of generality thzf.t
Fe(0) = F(0) = 0. Then FZ, > F* and (F& )e>0 is equi-coercive as soon as {F)e>on is
equi-coercive. In order to apply Theorem 3 it is sufficient to prove that Fi +Xi1(u)=1}
r-P-converges to Fu, + K{1(u)=1)- Thisisa straightforward consequence of Theorem
3 and of the positive homogeneity of degree one of Fg, and Fio.

4.2 Example: Plasticity.

Consider again the homogenization problem in Plasticity as described in section 3.2
with the simplifying assumption ['s = 8Q. We apply Theorem 3 and Corollary 2
with:

X =BD(Q), Y=LMQ)N, 1<p< N/(N-1),
L(u) = ] foudz, foe LF ()N, F*=J;, (see (3.25)).
0

We emphasize that F* is Ls.c. for the strong topology of X but not r-ls.c. With

" the notations of section 3.2

z . . -0 u= ,
Fe () = { '/s;‘bw (-:, e(u)) dz if u € LD(Q), div(x) =0, OonTy (4.10)

400 otherwise.

where

Yeoly, E) = VZH(y)I Bl
The "limit load problem™ reads as (TEMAM [15]):

= uel;fp(n) {'/“‘bm (%,e(u)) dz, L(u) =1, div(u) =0, u=0on I‘o}.

Define on BD{(1):
[ #men + [ #tam(—ur @i
1] Iy
J::m(“) = if div(z) =0, un=00n I '

400 otherwise.
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where u, = u — (u.n)n is the tangential component of u on I'y, and:

1
Inf — sV, ; -
HEm(E) = | o € Bl (Y) {77 | vt B+ et} 700 =0

+00 otherwise.

Set : _
A= Inf {JA™ Lw)=1,}
u € LD(Q)

Proposition 5. With the above notations:
i) (J;o)w T-converges to Jhom,

i) lim X=X,
e—=0

Proof of Proposition 5. Proposition 5 will result from Theorem 3 and Corollary 2,
provided that all the assumptions are met. To check that point i) of Theorem 3 is
met, note that F* = J¢  is positive and proper. Therefore:

- 0L InfF" < 400,

To check point ii) recall that J; T-converges to J,"::"‘ (3.26) which is proper. It
remains to check point iii).
Let (f¢)c»0 be 2 sequence in LP'(Q)N wenkly converging to f and such that

(F)"(f) < +oo.

To simplify‘ notations we shall assume from now on that ug = 0. A standard com-
putation (TEMAM [15] for similar computations) yields:

(P (f)= Tnf { fn (v (5.2°) +¢ (50)) dz,}.

T, P
where the infimum is taken ov;rer (¢7, p) such that
grad(p) ~ div(e?) = f*
Tr(eP) =0 }

and where

« Dy _ __1_ O—D 2
et = 2" o) < Vakyy
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and
"W.p) = 3 p?
PP T I8+ 2u)
Using assumption (3.27) which ensures that ¥* is bounded on its domain, and using
the fact that (F¢)* (f¢) < +00, we deduce that there exists a sequence (¢, p,) such

that:
grad(p,) — div(e) = f¢,
lelll < C, . @11

(Fc)' (fy<cC (1 + “P!"Lz(ﬂ)/lﬁ)

(f*)e>0 is bounded in L7 ()Y and o2 in L(Q)¥. Hence grad(p,) is bounded in
H~()). According to DENY and LIONS ([15] proposition 1.2 p 16) this implies that
(p*)e>o is bounded in L*(2)/R. Coming back to (4.11) we deduce that: (F*)* (f¢) is
uniformly bounded and using the I'-convergence of F* to F we deduce:

(F)"(f) € liminf (F*)" (f*) < +o0,

e—0

which completes the proof of point iii) of Theorem 3. In order to apply Corollary 2, it
is sufficient to check that F* is equi-coercive. This is a straightforward consequence

~ of assumption (3.27).
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A CAPIETTO,  MAWHIN AND F ZANOLIN
Boundary value problems for forced
superlinear second order ordinary

differential equations
1 Introduction

This paper describes recent results obtained in the existence and multiplicity of
solutions of nonlinear ordinary differential equations of the form

w'(2) + g(u(t)) = p(t, u(t), w'(t)), t € [a, b, . (1)

satisfying boundary conditions of the Sturm-Liouville or periodic type at a and b,
when g : R — R is continuous and superfinear, i.e.

g_(;:_) — 400 as Jul — +co, (2)

anet p : [a,b] x R? — R is continuous and satisfies a linear growth condition in
the last two arguments. Problems of this type have been considered since the late
fiftics, among others, by Ehrmann {7], Morris [12), Fucik-Lovicar [8], Struwe [14]
using shooting arguments and by Bahri-Berestycki {1],[2], Rabinowitz [13], Long
[10] using critical point theory. The reader can consult [3] for more details and
references. It may look surprising that one had to wait for the nineties to see the
method of Leray-Schauder applied to such problems (see [3]). The reason can be
fonmd in the fact that the success of the Leray-Schauder method relies upon the
obtention of a priori estimates for the possible solutions of a family of equations
connecting (1} to a simpler problem for which the corresponding topological degree
is ot zero. A natural choice for (1) would be to consider the family of equations

u’(t) + g(u(t)) = Ap(t, u(t), w'(t)), A € [0,1], @3)

which reduces to (1} when A = 1 and to the simple autonomous equation
u"(t) + g(u(t)) =0, {4)
when A = 0. An elementary study of {4) under condition (2}, based upon the

lirst integral of energy, reveals that (4) will have infinitely many solutions with arbi-
trary large amplitudes, satisfying the boundary conditions, and the above mentioned
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