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HOMOGENIZATION, PLASTICITY AND YIELD DESIGN

G. BOUCHITTE P. SUQUET

Abstract: We consider an epi-convergence problem arising from the
theory of vyield design. The functional under corsideration has a
linear growth with respect to the deformation tensor of the
displacement field, and the problem is naturally posed in a space of
displacement fields with bounded deformation. The problem includes a
linear constraint which can be closed or mot closed, depending on the
type of boundary conditions considered. 1In the case where the
constraint is not closed (applied forces on a part of the boundary) a
relaxation term appears. Physically the strength of the loaded
boundary turns out to be smaller than the natural guess deduced from
the well known Average Variational Principle.

1. OUTLINE OF THE PAPER

This paper deals with an homogenization problem arising from
yield design, i.e. from the mechanical theory which predicts the load
__carrying capacity of a structure made from materials with a limited
"'strength. In its dual form, the yield design problem (often called

the 1limit 1load problem) for a finely periodic structure can be
written as a variational problem:

(1.1) A€ = Inf JE(uw) = j'g i (x,e(u)) dx
u=0 sur I
L(u)=1

where Q is a bounded open set inR¥, u:Q~ R is a vector valued

field (rate of displacement), e(u) is its deformation tensor, I'j is a
subset of the boundary 9§, L(u) is the linear form:

(L.2) L(u) = J; f,.u dx + Ir gy -u ds .

1

where rl = o0 - fh,

107



108 G. Bouchitte and P. Suquet

h ¢ (x,E) 1is €-periodic with respect to the wvariable x, and isg
positively homogeneous of degree one with respect to the variable E:

(1.3) J(x+€T,E) = j%(x,E) for every T in &V,

(1.4) J®(x,AE) = A j€(x,E) for every E in mfz and every XA > 0.

Our objective is to find the limit of A\ and of J€(in the sense of
I'-limits) when € goes to 0.

A first guess for this 1limit, inspired by the Average

Variational Principle (A.V.P.) (BENSOUSSAN&al (4], MARCELLINI [14]),
would be to replace j ® in (1.1) by jB°® defined by a variational
problem on the wunit cell Y = ]0,1[¥ , which generates the entire

geometry by periodicity:

(1.5) L Inf I jPem(e(u)) dx ,
u=0onTlj f
L(u)=1
(1.6) jPe™(E) = Inf —l—-J. j(y,E+e(w)) dy .
Iyt Jy '

w periodic

This first guess is correct if I) = 8, or if g vanishes identically
(i.e. if the boundary is not loaded by imposed externmal forces). More
specifically in this case:

(L.7) 1lim X® = M= 1Inf J jhem(e(u)) dx + I jPom(-u® n) ds.
€0 L(u)=1 40 19

The second integral in (1.7) is a classical relaxation term

assoclated to the first integral term, and accounts for the loss of

the boundary condition ulr = 0. This term is ¢lassical in the theory
0

of minimal surfaces, and in Plasticity TEMAM [17].

Surprisingly, when the boundary is loaded (mes(f1)>0, gZ0) the
preceeding guess (l1.6) overestimates the exact result, SUQUET[16],
and can lead to an wuncorrect evaluation of lim A€. Examples of

discrepancies between the guess and the correct limit have been
exhibited by DE BUHAN[1l] and TURGEMAN&col[17]. A simplified form of
these examples is given in the Appendix, together with other
considerations on the strength of multilayered materials. The present
paper gives a variational formulation of the desired limit (Theorem 2
-+ corollary 2):
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(1.8) lim A = Inf { f §hom (e (u)) dx + f j"em(-u® n) ds +
Q

€0 u,nl I,
L(u,p)=1

+ J}}h(x,u-uds) }

where : i(u,u) - f fo.ou dx + I g, &
Q ° e

and where h(x,z) is & convex function, positively homogeneous of
degree one, which can be strictly smaller than jh°m(-zﬁgn(x)).

Expressed in mathematical terms, the basic explanation of this
result is that the linear form L is not lower semi-continucus in the
natural functional space of definition for (1.1). There appears a
relaxation term for the constraint L(u) = 1, and this relaxation is

expressed by W, i, and h.

Expressed in physical terms, our results states that there is a
change in the behaviour of the homogenized material on loaded

boundaries. This change in behaviour is better displayed on the
primal characterization of A, namely:

(1.9) A® = sup { A, 3 o, div(o)+Af, = 0, o.n = Ag, on I,
o(x) € P(x) a.e. x in Q ).

where P © (x) is the domain of (i¥)"(x,.), hereafter called the

strength domain of the material. The A.V.P. suggests that the
limit of A could be:

(1.9) A® = Sup { A, 3 o, div(o) + My = 0, o.n = Ag; on [,

g(x) € PP°® g.e. x in Q },

where P"°™ is the domain of (jh°®)".

Indeed it is proven in this paper that the limit of A® is equal
to Ahem;

(1.10) APe™= syp ( A, 3 o, div(o)+Arfy = 0, o.n = Ag, on [,
o(x) € PP°™ a.e. x in R, o(x).n(x) € C(x) on I} J,

The convex set C(x), whose detailed derivation will be given in the

text, denotes the strength of the material on I, . It can be strictly

1
smaller than the set CP°®(x) ={ o.n, ¢ € P*°"), indicating that the
strength of the homogenized material can be strictly smaller on the

loaded boundary than at any interior point of the body.
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2. NOTATIONS AND ASSUMPTIONS

2.1. The Mechanical setting

A periodically non homogeneous material with limited strength
occupies a domain N in RY . Throughout this paper 2 is supposed to
satisfy:

(2.1) ? is bounded and o is C!,

For the sake of simplicity it is assumed that 8 can be shared into
two compact disconnected parts I'j and [ .

The condition of limited strength is expressed by the fact that

the stress tensor & (symmetric NXN tensor field) belongs to a
strength domain P “(x) at every point x in Q. P® is assumed to be €Y

periodic:
€ X .
(2.2) g(x) € P°(®) = P(E) for every x in Q.
Throughout the paper we assume that P® has the following properties:

2
(2.3) P® is a closed and convex subset of R N" (space of
symmetric NXN tensors),

(2.4) There exists two strictly positive scalars k; and k;, such
that!

( o ,lol Sk} CP(x) € (o, lol s k,} for every x in Q.
(2.5) P(y) 1is constant on smooth subdomains of Y. The typical
situation is that of a partition of Y into two subdomains Y, and Y.,
called the constituents, and:
P(y) =P if y€Y , P(y) =P ify€Y, ,

where P! and P° are the strength domains of each comstituent,

? is loaded by body forces Af;, and surface forces Ag, on the
part I, of Q. X\ is the load parameter. Equilibrium of the body reads
as:

(2.6) div(o) + Afy =0 inQ, o.n = Ag, on T .

'Throughoﬁt the paper we shall assume the following regularity of the
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loading:
(2.7) £, €L , g € Co(T,).
The limit load, defined statically (in terms of stress tensors), is:

(2.8) X® = Sup { Al there exists ¢ such that:

div(o) + AMf, = 0 in @, o.n = Ag, on |

o(x) € P (x) a.e. X in 0 .

A® can alternatively be determined by a dual problem TEMAM[17]:

(2.9) A® = Inf {‘Llje(e(u)) dx ; u=u onl, , L(w = 1} ,

u

where
(2.10) j%(x,.) = (upe(x))* , L(u) = J;] £,.u dx + J}; g, -u ds.

We shall consider in the sequel a slightly more general version
of (2.9), namely:

(2.11) A® = Inf { Lﬂ j(;,e(u)) dx ; u = u, on f; , L{u) = 1} ,

u

where v, and j(y,E) are assumed to obey:

(2.12) u, € H/2(T)),

2
j(y,E) 1is convex and lower semi-continuous on ﬁﬂ with respect to E,
and periodic with respect to y. Moreover there exists k,, k,, k

g’ i 2
strictly positive constants such that:

(2.13) K, (IEI-1) € j(y,E) S k, (IEI+1),
(2.14) i“(y,Z) £k, for every Z in P(y) = dom(j" (y,.)).

Note that these assumptions imply in turn the following estimate for
the singular part je of j (defined below):

(2.15) Jo¥,E) = J(¥,E) + k,.

2.2 Functional analvysis

We shall extensively use in the sequel the space of vector
fields with Bounded Deformation (SUQUET[15], TEMAM[17]):

DT S A AT e L N LR i oy meT e mn T S ST I LR T S N N T N Ty e e e sert e mmie



112 G. Bouchitte and P. Suquet

BD(SY) = { u=(u ).y 4 ELNO) € (u) € Ml(n)}

where M!(§)) stands for the space of bounded measures on {1. Classical
results assert that BD({}) has the following properties:

(2.16) * BD(N) is the dual of a Banach space and, therefore, can be
endowed with a weak * topology for which bounded sets are relatively
compact sets. However BD(f)) is not a reflexive space.

(2.17) * There exists a trace application from BD(Q) onto L! (&)Y,
continuous for the strong topologies of these two spaces. However
this trace application is not continuous for the weak * topologies of
these spaces.

The following space will also be useful in the sequel:
(2.18) LD = {u =(u); oy ELO L € (w E L@}

In the following of the paper we shall deal with vector fields or
tensorial fields, rather than with scalar fields, and we shall denote
by a barred or a curved letter the corresponding functional spaces.
For instance:

(2.19) LP(Q) = { u= (4., g oy € LR } ,

(2.20) LP() = { O = (0 ;01%; 3<n » O3 = O5y0 Ty ELP () }

2.3, Convex analysis

For a proper convex function F:X = RJ{+) (where X is a Banach space)
we define its conjugate function F': X' = RU(4%) as:

F'(x") = Sup { (x,%5") - F(x)}
x X '

F* is a convex l.s.c. proper function omn X' . Moreover F = (F*)".
The indicator function of a nonempty, closed and convex set K
in X will be denoted by L :

L (x) = 0 if x € K, +o otherwise.

(I K)* is the support function of K. It is a l.s.c., convex function,
positively homogeneous of degree one.

We define the recession function jo, of a 1l.s.c., convex function j
by:
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jeofE) = lim l'j (tE)
t—o0 ©

It can be easily checked that j,, is the support function of dom(j").

4, T'-convergence

We shall frequently refer to the theory of I'-convergence (DE

GIORGI[12], ATTOUCH[2]). Let (X,T) be a topological vector space, and
F ¢ a sequence of functions mapping X into RJU (4x}. We define
I-1liminf(F®) and I-1limsup(F®) as follows:

(2.21) I'-1liminf(F®) (x) = Inf{ liminf(F®(x%)) ; x© L } ,

(2.22) I'-limsup(F®) (x) = Inf{ limsup(F€(x®)) ; x© 3 } _

These two [-limits are lower semi-continuous on (X,T)}. F€ is said to
be 7- ['-convergent to F if:

(2.22) [-1iminf(F€) = I-limsup(F®)

It is easily checked that F © 1is T-I'-convergent to F if the two
following requirements are met:

i) For every x in X, and every x° in X T-converging to x, then

(2.23) F(x) £ liminf F®(x%)
€

ii) For every x in X, there exists x¢ in X T-converging to x such
that:

(2.24) F(x) 2 limsup F®(x%)
€

In the sequel we shall omit the "T" for brevity.

We define the 1.s.c. hull of any functional F: X - RU{+»)

F = Sup{ G, G(x) < F(x) for every x in X, G is 7 l.s.c.}

We shall sometimes refer to F as the relaxed function associated with

F. An interesting property of ['-convergence is that F is the I'-limit
of the sequence F= F,

T T AT TG 1 T YT W R Y 8T T stk v et s iaT g oy e b wem o n =, e
_’;:-‘. SRR ALK i S D R R T R AT T T LT T AL Badl
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3 .HOMOGENIZATION AND RELAXATION

3.1 Preliminary result

Let wus first consider the case where I = @, and define on

L?(Q) (p will be specified later on):

j; j€(e(u)) dx if u € LD(Y),

(3.1) J€(u) =
+29 otherwise.

3.2 J€ - J¢ )
(3.2) ag (W =I5 (W + H{u - u, on )

Let j"°™ (E) be the homogenized density of energy deduced from the
AV.P.:

1
(3.3) jP°™(E) = Inf {Wl_fY j(y,E+e(w)) dy }

It 1is readily seen that j®°" is convex and obeys (2.12) and (2.13).
Its conjugate function reads as (BOUCHITTE{S]):

. 1 "
(3.4) (3he™)"(Z) - éng {Tﬁij (y,Z+o(y)) dy } -
g

per

where :

Sper = { o € L2(Y), div(o) = O, IY ody =0, o.n anti-periodic}.

We note P"°® = dom((j"°™)"), and we define:

J; jP°™(e(u)) if u € BD(SY),

(3.5)  Jhom(y) =
+20 otherwise.

(3.6) Jggmcu) = Jhom(yy) + j;n 1597 ((u, -u)®, n) ds.
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THEQREM ] (BOUCHITTE(5]): Let p be such that 1< p < N/(N-1). Then:

i) J° T-converges to Jh°™ in L () weak (and strong if
p < N/(N-1))

ii) J:u I"-converges to J2°m in L P(Q) weak (and strong if
0 ‘
p < N/(N-1).

The reader is referred to [5] for the proof of Theorem 1. This result
has been extended to a more general form of j by DEMENGEL & TANG-QI
[13].

We now turn to the problem of limit loads. Let L be the linear
form:

(3.7) L{w) =.L} fo.u dx , where f satisfies (2.7),

and consider the variational problems:

(3.8) X = Inf J:(u) ,
L(u) =1
(3.9 ARem = Inf  Jhem(y)
L(w) =1

COROLLARY 1: Under the above assumptions:

lim A€ = zhom
€0

Corollary 1 is a direct consequence of Theorem 1, and of the
continuity of L on LP(Q). We now turn to the more difficult general

case, where a part of the boundary is loaded.

3.2 Loaded boundary: statement of the result

When I, is not empty, and g, does not vanish identically, a new
difficulty arise, since the linear form L:

(3.10) L(u) = j; f,.oudx + J}l g, -u ds

is no more continuous on [P (fI) or even on BD(Q}) weak* (the trace
operator is mot continuous from BD(f) weak* into L*(I})). The

constraint ( L(u) =1 } is therefore not closed for the natural

topology for which minimizing sequences of the variational problem

RISV S

AT T T TR T LA TR O T e R T T T T T R A VT 0 M PR W Y T T LT O DR e
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(3.8) contain a converging subsequence.

To overcome this difficulty, we consider separately the
contribution of the displacement rate u in the inside of N and its
contribution on the boundary I, which is denoted by k. Since p is in

Ll(Fl) as soon as u is in BD(f?), the most convenient functional space

for p is M (T',), where bounded sequences in Ll(r;) contain weakly#
convergent subsequences. Let p be such that 1< p < N/(N-1) and define
on X-lP ()X (I',) a sequence of functionals $° by:

J; F9(x,e(w) dx , if u € LD() |, ulp = o,

(3.11) 9 (u,p) = and B = u ds on T .
+0¢  otherwise

and a linear form, continuous on X, by:

(3.12) Leu,p) = f £ .udx + f g du .
9] ° f} °

Note that:

(3.13) A% = Inf { $°(u,p) , L(u,m) = 1} = Inf { J%(u) , L(uw) = 1).
u,p u

-~

Since L is continuous (while L was not), it is sufficient, in order
to pass to the limit in (3.13), to determine the I limit of % on ¥
endowed with the strong topology of [P(f) and the weak+ topology of

M ) (note that due to the equi-coercivity of ® €, and to the

compact embedding of BD(?) into P (f), it would be equivalent to
search for the I-limit of ¢ into BD() x m1(r;) endowed with the
weak* topology of each space).

For this purpose, consider:
5@ = { o€ LAY, div(e) ELP' (W) , o.n € COT,) Ix
and for f in L?' () and g in EP(T}):
S(f,g) = { 0 €E 5(), div(e) + £ =0, o.n = g on o
S(€) is endowed with the following topology T:
o = o in L) weak*

(3.14) o® Lo iff div(o%) - div(o) in LP' () weak *
' o .nlp - a.nll--1 in C°(I}) strong
1
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Moreover let us define:
K¢ = ( 0 €8(0), g(x) € P(x) a.e. x in )
When € goes to 0, K* admits a limsup, denoted by K*, and a liminf,
denoted by K *, in Kuratowski's sense for the topology T. We further

assume that there exists a closed subset K in 5() such that:

(H) K° converges to K in Kuratowski’s sense for the topology 7
on S(Y).

Then we define for every x in I
C(x) = Closure{ o.n(x), o0 €K }.
C(x) is a 1l.s.c, multi-application with convex and closed values.

We are now in a position to state our main result:
THEOREM 2: The I'-limit of ¥ in X is:

rc

S CTIT J; iFem (equ)) + J‘ jgfm((uo-u)ﬁgn) ds +

J}l h(x,p-uds),

where h(x,z) is the l.s.c., convex, positively homogeneous of degree
1 function defined as:

h(x,z) = HE(X)(Z).

Consider now the sequence A € of infima (3.13) (where u, = 0), and
set:

(3.15)  ARem — Inf  { dhem(y )y | L(up) =1 ).
u,k € X

COROLLARY 2: Under the above assumptions:
lim (A®) = ABem,
€0

Corollary 2 is a direct consequence of Theorem 2 and of the

T e SO e P T ST
;‘{}:~.‘ﬁ‘s=ta'xp»_":‘}yl"f?-’.‘::‘?"\'- BRSNS e

N TR TR
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continuity of L on X.

Remark 1: It can be checked (cf [7]) that:

Mhom Inf( AL A ),

1

where :

A = Inf Jhem(yy Y and
L(u) = 1{ ’ y

A = Inf f h(x,p) , - 1
H{Jrl (%,1) J‘rlgu- l,uEm(rl)}

= Sup { A, Ag(x) € C(x) for every x in Fl )
We begin the proof of Theorem 2 with a preliminary result.

PROPOSITION 1: Let 0° be a sequence of elements of S(}) converging to
o in $(N) for the above described topology 7. Then:

(3.16) liminf fn (i)Y (o%) dx 2 fQ (jtom)" (o) dx

Moreover if o° belongs to K®, then o belongs to Khem,

Proof of Proposition 1:

Let (9, ),g; be a finite family of disconnected, Lipschitzian
open subsets of , such that

Q- Uy =0.
mes( = »;

Let:
(3.17) Z= Z z, Xp (%),
i€l i
2
where =z . € R g » and X , is the characteristic function of A.

Application of Theorem 1 to each open set ﬂi and to the sequence of

functions je(x,zi+.), yields the existence of a sequence ul in BD(Qi)
such that:
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1) ug |agi’ 0, lim(ut) = 0 in LP" (),
€0

s . - shom
ii) ;ig J}z j (z + e(ul)) dx J; j (z,) dx.

Let ut - EE u xh Then:
i€1

1) u¥lgg = 0, lim (uS) = 0 in 0P’ (),
_yO

- :hom
ii) 11m j; j € (Z+e(u®)) dx J}EJ (Z) dx.

Now let & ° be a sequence in S(f}) T-converging to o. Fenchel's
inequality yields:

.[Q (i5)* (o%) dx 2 J;'z Ue:(Zfe(ue)) dx - J.Q i€ (2+e(u®)) dx.

But:
limJ o%:e(uf) dx = - 11mJ. div(o®).uf dx = 0,
€-0 J0 Q
therefore;
(3.18) llm 1nf'J}2(J Y (0%) dx 2 J}Z( o:Z - j"°m(Z)) dx.

(3.18) is valid for every piecewise constant Z in the form (3.17),
and can be extended by density to every Z in L }(Q). We take the
supremum of the right hand side of (3.18) on Z in L}(Q), and note

that by Rockafellar's theorem:

(3.19) Sup [ fé ( 0:2 - jRhem(Z)) dx] = j; (jhem™y* (o) dx .
ZELT ()

(3.16) is now a direct consequence of (3.18) and (3.19).
If moreover ¢° belongs to K°, then the left hand side of (3.16)

is finite. The same conclusion holds for the right hand side, and
o(x) is for a.e. x in the domain of (j"°™)", i.e. in P"°®, Q.E.D.

Remark 2: Proposition 1 can be strengthened in the following way .
Let:

,aﬁm;;'v— T TN, '_i"-!q::“"'.(-‘ TG RTINS I T Do i s s et T R TR R L e it T
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G5 (o) = J'Q (35)" (o) dx , GP°m(0) = fn (jBom)* (o) dx.

Then GF [-converges to GP°™ in S() endowed with the topology T. This
stronger result will not be useful in the sequel.

3.3 Proof of Theorem 2. First step: liminf $°

In a first step we show that:
(3.20) liminf % = ¢honm

For the sake of simplicity we only consider the case I, =0,

Let (u®,pn°) be a sequence in X converging to (u,m) for the topology
L?(©) strong x M (I',) weak *, and such that:

iy @°(u*,n®) < ¢,
(which implies that u® € LD(R) and p® = u°ds )
ii) lim (u®) = u in LP(R) strong,
€

lim (uds) = p in M (3D weak*,
€0

Let O be an element of K, and o ® a sequence of elements of K®

T-converging to . Consider, after ANZELLOTTI [1], the measure
A€ = 6%:e(u®) defined on Q by:

(3.21) <,¢> = - J; div(o®) .u®e dx - J}ch:(ufegrad<o)) dx.

€

The topologies for which ¢ and u® are converging sequences allow us

to pass to the limit in the right hand side of (3.21):

lim <€ ,¢> = A P> = -I div(o) . up dx - I O (uBgrad(p)) dx.
€0 f Q

Therefore A© converges in M! () weak* to A = O:e(u). Define:
Q, = { x €Q, dist(x,00) > a )

Then a classical argument asserts that, for @ outside a countable

set, the following convergence holds:

(3.22) lim AS(8,) = A(R,)
€

Consider such an @ as fixed for a moment. Then:
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(3.23) I j€(e(u®)) dx -J i€ (e(u®)) dx'+.r
Q Q

€ []
Q'Qor.j (e{u™)) dx,

and by Theorem 1:
(3.24) limj j¥(e(u®)) dx 2 .[ jhom(e(u)) dx.
' €0 Qov. Qo:.

Next we note that:

1]

J‘Q_Qa J¥(e(u®)) ax 2 Q.0 Jole(u®)) dax - k, 12-Ql

d

Q-0

v <

v

(3.25) 0%:e(uf) dx - k, 19-Q,|

But:
e € - £ . € ) € €
J.Q g e(u ) dx J.BQ g .,n.u ds Jln div(o™).u" dx.

Considering the convergence of each term under the integrals in the
right hand side of this equality, we obtain on one hand:

‘]E.irg .[Q o®e(u®) dx = J;Q o.n dp - J.Q div{(o).u dx .

On the other hand, by virtue of (3.22), we have:

1lim o%:e(uf) dx -J. og:e(u) dx .
€0 Inm Qo.-.

Therefore:

lim‘J'. ae:e(ue) dx -‘[ g.n dp - J. div(o) . u dx - J;) g:e(u) dx
€0 S a0 Q %

Coming back to (3.23)(3.24) and (3.25) we obtain:

1;151'{1)nf ¢ (u®, ) 2 Jlna "™ (e(u)) + .[an c.n dp - J.Q div(o) .u dx

-Jl g:e(u) dx - kz iQ-QOLI
Qo«.

Now letting @ go to 0, and after due use of Green's formula, we
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obtain:

(3.26)  liminf @°(u®,n®) 2 J'

jham(e(u)) + j g.a {(dn - uds).
€=0 Q2

o0

(3.26) 1is valid for every ¢ in K, and we take che supremum of its
right hand side with respect to such ¢'s. To compute this supremum we
claim that:

(3.27) Sup f g.n.{dn - uds) = J Sup' (z.(de - uds))
oK Ja(2 N zEC (%)

= I;Q h(x,p - uds).

To prove this claim it 1is sufficient to prove that the set
{ o.n, 0 EK } is stable under Lipschitzian partition of unity (see
BOUCHITTE & VALADIER ([8]). This is the object of Lemma 1 below.
(3.27) (3.26) complete the proof of (3.20).

LEMMA 1. Define Kl = { on, g €K}, Let (®,),c. be a finite family
of elements in K, and (& ) e, a Lipschitzian partition of unity on
onN:

@, € Lip(392,(0,1}) , > @ = 1.
i€1

Then: ¢ = EE &i A belongs to Kl.
i€1

Proof of Lemma 1:

By definition of K| there exists a family (0.),g, of elements in
K such that ¢, =0, .non 9. According to BOUCHITTE & VALADIER [8],
the partition of wunity (X, ) .g; on 9 can be extended into a

Lipschitzian partition of unity (Bi)iEI on 2.

Then 0 = EE Bi o, satisfies
i€l

® = o.n on o5},

To complete the proof of Lemma 1 it remains to prove that ¢ belongs
to K. By definition of K, each 0, can be approached in the topology

(3.14) by a sequence Of of elements in K*. Define o° = E: B, Of. It
ier
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is easily checked that o € belongs to K° (convexity of P¢, and
Lipschitz regularity of @,), and moreover that o° converges to O in
the topology (3.14). Therefore o belongs to K, and Lemma 1 is proved.

Q.E.D

3.4 Proof of Theorem 2. Second step: limsup €

In a second step we show that:

(3.30) -limsup ®F < Prom
€0

LEMMA _2: In the duality between X and l?'(n)xc°(r1), the conjugate

functions of ®* and #°" read as:

(3.31) (%) (£,9) = Inf { J (i5) (o) dx - J} o.n.g, ds }
oES(£,0) \ J0 0 -

Sup I (jP°™)Y* (o) dx - J‘r o.n.u, ds
OSS(f,9) ¢ :

(3.32) (#°™)'(£,0) = 1f @(x) € G(x) for every x in [,
+¢ otherwise

Let wus first prove how (3.30) can be deduced from Lemma 2. For this
purpose it is sufficient ( AZE [3] ) to establish the following
inequality:

(3.33) C-liminf($%)" 2 (Phomy"

Let (f° ,0° ) be a converging sequence in LP' (Q) weakxC’(I)) strong,
with limit (£,9), and such that :

liminf (9°)" (£°,0%) < 40 .
According to Lemma 2, there exists a sequence ¢° in S(f) such that:

i) 6° € s(f*,9*) , thus o° € K*,

2

Ly

(3.34)  ii) ()" (£%,90%) zj (3$)" (%) ax - J o .n.y, ds - €.

Q
It can be readily seen that the growth condition (2.13 ) together
with (3.34) implies that ¢° is bounded in L™(R). Since it belongs to
S(f ©,¢ ) N K° it contains a T-converging subsequence, the limit of
which. noted . is in S{(f.¢) N K, Moreover :
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(3.35) lim j " .n.u, ds = f g.n.u, ds .
€0 rh ° I} °

According to Proposition 1:

(3.36) liminf J.Q_ (3 (o%)y ax 2 J.Q (j*em)* (o) dx .
€0 - -

Coming back to (3.34) with the help of (3.35)(3.36), we obtain:

(3.37) liminf (D%)" (£5,9%) = (P°=)" (£, ),
€0

- which is exactly the desired statement (3.30). The proof of Theorem 2
is complete, provided that we prove Lemma 2.

Proof of TLemma 2:

For (£,9) in L?" ()xC°(I'}) we compute:

(P)" (f,p) = Sup [ [ f.u dx + J} @.dp - ¢F(u,u) ]
N 1

u,p € X
(3.38) = - Inf [ I je(e(u)) dx - J f.u dx - J' @e.u ds]
u 0 ‘ Q r;

where in (3.38) u € LD() and u = u;, on I).The computation of the
dual problem associated with (3.38) is a routine exercise in Convex
Analysis (see TEMAM[17] ), and yields (3.31).

The derivation of (3.22) contains a difficulty, since $'°% is a
priori defined on the non reflexive space BD(Q)xml(T}), for which
application of Convex Analysis is not straightforward. Therefore we

consider in a first step the following function:

dhem(y ) if u € LD , p € Ll(r}),

(3.39) Plu, ) =
' +20 otherwise.

We claim that ¥ and 9"°"® have the same dual functions, or in other
words that they have same l.s.c. regularized functions in LP (§2)x
M (T,). The following set of inequalities is straigntforward:

> ¢hom o > ghom

In order to prove the reverse inequality (@ < &h°“), consider, for
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every (u,p) in BD(Q)XMI(TE), a sequence (u°, 6%) in LD () such
that:

1) lim u® = w in [P (), u® = u on 3, and
€0

Lim | j"°™(e(u®)) 4 -‘f jPom (e(u))
i J}g e(u)) dx fﬂ e(u

Existence of such a sequence 1is ensured by TEMAM[17] (see also DAL
MASO [10]). '

i1) lim 8% = p in M (T,) weak*, and
€0

lim f h(x,0%-u) ds = I h(x,u-uds).
€0 fl I}

Existence of such a sequence results from BOUCHITTE & VALADIER [9]
. since h(x,.) = E;(x) (.) where C is a l.s.c. multi-application with
closed convex values. For this sequence we obtain:

lim ¥(u®,0%) = ¢hom(y uy
€0

ie. ¥ dhom ,png consequently ¥ < ¢hom | This inequality completes
the proof of the fact that ¥ and ¥'°™ have the same dual function.

We now proceed to the computation of ¥ . For (f,9) in LP' ()x
C(T,), ¥ (£,9) is defined as:

¥ (f, ) = Sup {J.Q (f.u - jh°“‘(e(u))) dx + Jll"

(9.0 - h(x,0-u)) ds}
T 1

where the Sup is taken over (u,0) € LD()XL' (), u = u, on I,. For
fixed u the Supremum in © is computed by means of Rockafellar’s
theorem:

Sup { jr.(Q-@ - h(x,8-w)) ds} - Ir (6.u + h" (x,9(x))) ds =
et (")) 1 1

J},B.u ds if @(x) € C(x) for‘every x in I,
1
+00 otherwise

Therefore:

O g
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- Inf {J (i®°®(e(u)) - £.u) dx - f ®.u ds, }
u Q I
(3.40) ¥ (£,0) = if @(x) € C(x) for every x in r,

+2¢ otherwise.

where the infimum in (3.40) is taken over u € D), u = u, on I, We
can now perform a routine computation using Convex Analysis, to

evaluate the infimum in (3.40) as the supremum in (3.32)., Q.E.D

3.5 Comments about the assumption (H)

For practical use, we need to check assumption (H), and to
determine more explicitely the convex set C(x) or its support
function h(x,z): this is a difficult problem. However the

determination of another set C(x) gives an useful estimate on C(x).
In several cases, the limit in Kuratowski's sense in I?(r}) strong of

the sets
Ki ={ o.nlr_, o€ K},

can be more easily determined. Indeed it can been proved (BOUCHITTE
[6] ) that, if K f converges in Kuratowski’s sense in C°(r;) to Kl,
then K, reads as:

K -{eecd)Y, o € i},
where C is a 1.s.c. multi-application, with closed convex values.

In the case of two constituents, with strength domains P, and

P,, an explicit formula for a(x) can be derived. Specifically, let us
define:

We assume that:

(3.41) H'"1(3A%) = 0 , Int(A%) = A4, Int(l - A%) — B
7 1

Then ([6]) A and B are closed and:

P, n(x) if x € A-B ,
(3.42) G(x) = 1 P, n(x) if x € B-A ,
P, n{(x) NP, n(x) if x € AN B,



L e H N A Dyl i i

b R T

ar e melr e AT s

Homogenization, Plasticity, and Yield Design 127

More generally let us define:
Khom m { 0 € S() , o(x) € PBO® z.e. % in Q) ,

Chom(x) = closure { o.n(x), o € Krom)

Under the hypothesis (2.1) assuming that o is G!, it can be checked
that C "°® (x) = P 1°® n(x) (see lemma 3 below). The following

proposition relates C(x), C(x) and CP°®(x).
PROPOSITION 2: Under the above assumptibﬁs:
1) (P; N Py) n(x) € C(x) € G(x) N ¢hom(x),
ii) h(x,z) < J&™ (n(x)®_ z)

The inclusion in i) can be strict as well as the inequality in ii).

Remark 3: Note that a more specific result can be established if:

(3.43) P, CP

1
Indeed, in this case :

(P,N Py)n(x) = P,n(x) = P,n(x) NP n(x) ,
and we deduce from (3.42) and Proposition 2 that:
(3.44) C(x) = Pyn(x) for every x in B.

On B the strength of the boundary is ruled by the strength of the
weakest material. It is proven in the appendix that, in case of a
layered composite material satisfying (3.43), this conclusion holds
true for the entire boundary.

Proof of Proposition 2 :
We begin with a preliminary result:
LEMMA 3: Under assumption (2.1) the following equality holds:
Chom(x) = PROM n(x) for every x in r.

Proof of lemma 3: First note that the inclusion

PEem n(x) C ¢ghom(y)
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is immediate: if Z is in PP°" n(x) for one x in I',, there exists X in

P R°® such that Z = Z.n(x). The constant field o(x) = Z is obviously
in KP°®  and by definition of CP°®(x), Z.n(x) belongs to it. In order
to prove the reverse inclusion, we note, after ANZELLOTTI, that for o
in L% (Q) and div(e) in LP' (), and provided that 80 is C!, we have
the following characterization of o.n on 9: at every Lebesgue point
of o.n

: 1
ogn(x) = lim lim {— J g.n(y) dy }
O ,O-I- r—0* IQ: , P (%) I Qr , P(x)'

where Q £ p (x) = ( y-tnx), ly-xl <p, 0<t<r ). Therefore

o.n(x) belongs to PP°" . n(x) a.e. x in 9, as soon as o(y) belongs to
P Po" a3 e. y in 2. If moreover o belongs to KhP°™ the continuity of
both o.n(x) and of the multi-application P*°® n(x) imply that &.n(x)
is in P PP pu(x) for every x in rl . Therefore PP°® n(x) contains

{ o.n(x) , 0 € K"°™}, and since it is closed, it contains the closure
of this set, which is exactly C"°™(x). Q.E.D.

Coming back to the proof of proposition 2, we note that the
first inclusion in i) is straightforward. Let us prove the second
one. Let Z be an element of C(x), and Z' = AZ with 0 < A < 1. There
exists @ in CO(T;) such that @(x) = Z', and ¢ in K such that o.n = ¢

on I',. Let o be a sequence of elements in K converging to o for the
topology (3.14). Then, according to Proposition 1:

g(x) € PH°" 3 e, x in Q,

and therefore @(x) = o.n(x) € P*°"n(x) for every x in I', .Moreover:

lim ¢*.nlr = o.nlp in oIy,
€0 1 1

and therefore @(x) = o.n(x) € c (x) for every x inT and more

1
specifically that Z' belongs to &(x). The conclusion is extended to Z
by letting A tend to 1. This completes the proof of the second
inclusion in 1i). 1ii) 1is a direct consequence of this second
inclusion.
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APPENDIX
Layered materials

A.1 Strength domain of a lavered material with two constituents

Consider a two dimensional layered medium with two constituents

denoted 0 and 1, with volume fractions vy, and v, . The strength domain
of each constituent is defined by :

(A.1) af, + 203, + 95, S K (x) ,
where k(x) = k; or k,, and ky = k,

The two layers being infinite in the «x , direction, the
microscopic stress fields can be assumed to depend only on x, .
Therefore it results from the equilibrium equatioms that o,, and O,,
are constant and equal to their average:

(A.2) T, =%y, Gy =2,

The microscopic yield condition (A.1) now reads as:
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| o, (x,)1 < (kz(x) - 252 4 Zgz)“z,

i.e.

+ 5

2

| 211! < v, ( kg ' 22% 2

)1/2 t v, ( ki - 2%, + 2%2)1/2'

For biaxial stress states ( 2,, =0, Z,, and 2,, # 0) the above

macroscopic strength domain is delimited by fourth order curves, and

by the two straight lines 2, = % k, (see figure A.l). There is a

"weakest link" effect since the strength in the direction orthogonal
to the layers is always equal to the smaller strength of the two
materials, irrespective of the volume fraction of the constituents.

However in the direction of the layers the strengthening is
effective: for Instance the strength in uniaxial tension in the
direction of the layers is the arithmetic mean of the constituents
strengths v k, + v, k, .

b X
+h 2
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Figure A .1

A.2 An elementary illustration of why the A.V.P. fails

Now consider a rectangular block of this layered material,
submitted to uniform tractions parallel to the layers direction:

for X, = L

(A.3)
for X, = T h

LRI A
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It is readily seen that :
A€ =k, = Inf{ k,, k)

since | o, (x)! Sk, a.e.x in § = { x €Q, P¢(x) = Po}.

0, =& XAonx ==%L, and since aﬂg intersects { x, = * L}.

1

It is also readily checked that:

Sup{ Al £ € PRem  giv(Z) = 0, Z satisfies (A.3)}
- Voko + Vlkl'

Therefore 1lim(A ® ) is different from the result provided by the
AV.P..

A.3 Application of Theorem 1

We apply the general result provided by (3.42) for the layered
material pictured on Figure A.1l (with strong layers of material 1 at
top and bottom of the body), the sets A and B read as:

A=0d0 , B = | X, =% L)

Therefore Remark 2 imply that :

C(x) = Pyn(x) for every x in B.

We can state a more specific result, valid for any geometry of the
layered material:

C(x) = Pyn(x) for every x inT,.
To prove this affirmation we note that, on A - B, material 1 is

exclusively present, and therefore that n(x) = e,, where e, gives the
direction orthogonal to the layering. According to (A.2) we have:

PRoMe, = { (£,,,%,,) €R, 3 0(y,) €P(y) ace. y In Y,
<> = <>, 0 ,=Z,, 0= T, ).

Note that:
PPe, = { (0,,,9,;) € R, 3 0, such that (0,,, 0;,, 0,,) € P° }'

Therefore, under the assumption P °C P!, we have P"°"e, = P%¢,. We
conclude by means of proposition 2, since:
(PN Plye, = Ple

; » and C(x) N chem(x) = Ple, .
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We have established the following result: for a layered
material with two constituents such that P° C P!, the strength on the

loaded boundary is ruled by the strength of the weakest constituent.

We immediately conclude that, in the specific example under
consideration, AR°® given by (3.15), or equivalently by the primal
characterization (1.10), is equal to k, , i.e. to the limit of A®.

o
Q.E.D.
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