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cHAPTER 1 : [NTRODUCTION

These notes intend to give a brief summary of a few recent develop-
ments in the field of the behavior of heterogeneous materials with some
emphasis on the dissipative or non-linear range. This topic has been
widely discussed in the framework of polycrystals, and the main celebra-
ted contributions by BUDIANSKI & al, HILL, HUTCHINSON, KRONER, MANDEL and
others are recalled by A, ZAOUI in this volume. Less attention has been
paid to plasticity of composite materials, mainly for two reasons. The
first is that most of the composite materials develo ped in the past
thirty years exhibit a brittle behavior rather than a ductile one. However:
because of the importance of thermal loadings, we have been witnessing
a significant development of metal matrix composites, with a highly non
linear behavior. The second reason of the limited interest for the non-
linear problems is the difficulty of the subject and almost no micro-
mechanical problems have yet been solved in a closed form except simple
ones. The following HILL's appreciationl (1967) is still valid twenty
years later : "... As for non-linear systems, the computations needed to
establish any complete constitutive law are formidable indeed, even with
the piecewise linearization forced by the model". Indeed in most situa-
tions we shall limit ourselves to pointing out some simple qualitative
facts, or elaborating models based on crude approximations, and we shall

often turn to finite element computations to obtain more specific results.
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2
Recent experiments by LITEWKA & al

illustrate in an illuminating

Manner the main points in which the present work is interested, and some

Tesults of these authors are briefly outlined here. In order to model ani-

Sotropic damage they performed tension tests at various inclinations on

thin perforated sheets (see figure

la)

. Figure Ib,

borrowed from their

work, reports the curves external stress/external strain that have been

observed at various inclinationms.
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Three different regimes in the behavior of this specific heterogeneous
material are evidenced by this figure. For small external stresses and
strains the material is in the linearly elastic range. For relatively
large strains the external stress reaches a threshold which lead to
rupture . A transient part is observed in which the hardening of the
original material is affected by the perforations. The present work will
devote one section to each of these three typical regimes : linear beha-
vior, rupture of heterogeneous materials, overall elastic plastic hehavior

of composites.

Contents

More specifically the paper is organized in the following way :

. Section 2 1is devoted to general considerations on representati-
ve volume elements (r.v.e.), averaging and micromechanics. We pay a spe-
cial attention to the boundary conditions imposed on the boundary of
the r.v.e., which play an important role in non-linear problems. We set
forth the importance and the generality of the so called HILL's macro-

homogeneity equality which expresses the principle of virtual work bet-

ween the microscopic and the macroscopic scales.

. Section 3 1is devoted to linear problems. The concept of locali-
zation tensors introduced by HILL and MANDEL for heterogeneous elastic
materials is exposed. We also consider Maxwell's viscoelastic bodies and
we show that short range memory effects for the constituents give rise to

long range memory effects for the composite.
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. Section 4 is devoted to the failure of heterogeneous materials,
We assume that the constituents possess an extremal yield locus which is
the limiting set of all physical stress states. We propose a method of
constructing the macroscopic extremal yield locus. The proposed set gives
an overestimate of the actual set but this estimate turns out to be exact

for rigid plastic or elastic plastic constituents.

. In section 5 we discuss the transient part of the stress strain

curve of the composite, namely the influence of microscopic elasticity

Oh macroscopic hardening. A large part of the qualitative analysis relies
on HILL's and MANDEL's previous works L3 . Once the complexity of the
€xact law is recognized we turn to a few approximate models which yield

ore quantitive informations.

Throughout the following Einstein's convention of summation over
Tepeated indices will be adopted. We shall avoid as far as possible the
Use of indices, denoting by a point or two points the summation over one

Or two indices. For instance

on , 0: e , a‘te , €' 3 az:e stand for
o,.n, €. ‘e i.oa,. .
13“3 ’ 013831 ’ aljkh e E31 aleh *hk
I :
1s the space of 3 X 3 symmetric second order tensors.
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CHAPTER 2

2, AVERAGES. BOUNDARY CONDITIONS

2.1, REPRESENTATIVE VOLUME ELEMENT

In the discussion of the overall properties of a highly heterogeneous
medium two different scales are naturally involved ithe macroscopic scale
(termed x) on which the size of the heterogeneities is very small, and
the so called "microscopic" scale (termed y) which is the scale of the
heterogeneities. In order to derive a macroscopic (or homogenized) law
for the composite one has to assume first that a "statiscally homogeneous
Specimen" or 'representative volume element' can be defined in the com~
Posite. Experimentalists know that the assumption of statistical homoge-
Neity can be a difficult matter illustrated for instance by the size
effects encountered in the determination of the toughness of a composite.
However we will disregard this difficulty and assume that at least one
choice of the r.v.e. is possible. This choice of the r.v.e., or its model-
ling, determines a first difference between various theories of homogeni-
zZation, In the model of spheres assembly (HASHIN 4) the r.v.e. is filled
With composite spheres of different sizes respecting the volumetric ratios
of the phases ; in the self consistent scheme > the r.v.e. is successive-
ly modelled as an ellipsoidal inclusion of each phases in an infinite
Datrix endowed with the unknown macroscopic properties. In the homogeni-

Zation theory of periodic media the r.v.e. is the unit cell, which gene-
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rates by periodicity the entire structure of the composite. This unit cell
is even sometimes modelled by an assembly of parallelepipedic blocks
(ABOQUDL 6) . This variety of choices for the r.v.e. eventually results
in different expressions of the macroscopic laws but the derivation of
the latter follows, most of the time, the general procedure that has been
settled by HASHIN 4 , HILL 7 , KRONER 8 and other pioneers of the sub-
ject of composite materials.

At a macroscopic point x we must consider two different families
of variables : on the one hand macroscopic variables which stand in the
homogeneous body the material properties of which we are looking for,

on the other hand the microscopic variables which take place in the r.v.e-

idealized by x at the macroscopic level.

! coe ) X
. “" .. L]
Heterogeneous Homogeneous
X macroscopic
«d e . .
« * e y mlcroscopic
.y *
L] L 4
7
b .
LAY .
] .t
- L

Representative volume element V

- Figure 2 -~
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For instance we shall distinguish

z E macroscopic stress and strain tensors

and

o(y) e(y) microscopic stress and strain tensors.

It results from classical arguments on oscillating functions that
the macroscopic stress and strain tensors must be the averages of the

WMicroscopic corresponding quantities

1 (+)
5,, = — - = <g,,>
ij {vi {, 01] dy 01]
H
2 _
Eij = W{ j;, eij(u)dy <eij(u)>

where < ,> gstands for the averaging operator. However when the hete-
Togeneities are voids or rigid inclusions, the stress or strain tensors
Temain to be defined in these heterogeneities, and more care is to be
applied when considering the equality ' (1) (cf. § 3.2) .

Moreover, all the mechanical quantities which are usually assumed
to be additive functions are averaged when proceeding from the microscopic

level to the macroscopic one.

——
(+)
< > is the average symbol
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;_;- =<p> (additivity of mass)

p& = <pe> (additivity of internal energy)

- (2)
p 8 =<ps> (additivity of entropy)

D =<d> (additivity of dissipation)

where capital letters refer to Macro quantities ; e , s , d respective-
ly denote the specific internal energy, the specific entropy and the

dissipation in the heterogeneous material.

2.2,  LOCALIZATION

The procedure which relates I , E (and possibly their derivatives
with respect to the time and other parameters), by means of (1)(2) ,
and of the micro constitutive laws, is termed homogenization. The inverse
procedure, termed fLocalization, amounts to a micromechanics problem which
permits to determine microscopic quantities, for instance o(y) and
e(y) , from macroscopic ones, I and E . For this purpose the follo-
wing system of equations, with data T or E , 1is to be solved for ¢

and e(u) :

microscopic constitutive law

divo =0 (micro equilibrium) 3

<g> r or <g(u> =E

This problem exhibits two noticeable differences with a classical problem:
i) the loading consists in the average value of one field (and not
in surface or body forces)

ii) there is no boundary conditions.
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Problem (3) turns out to be ill posed, due to the absence of boun-
dary conditions, which are to be specified by a careful inspection of
the status of the r.v.e. inside the heterogeneous medium. These bounda-
W conditions must neproduce, as closefy as possible, the in siftu state
0f the n.v.e. inside the material. Therefore they strongly depend on the
choice of the r.v.e. itself, and especially on its size. Although the

attention will be focused on periodic media, we have to comment on two

clagsical types of boundary conditions (HILL L7 s HASHIN 4)
uniform stresses on 9V ! 0O.n = I.n on 9V (4)
or
uniform strainson v t u=_E.,y on dV (5)

It is immediately seen that a displacement field which satisfies
(5) , and a divergence free field o which satisfies (4) , also satis-

ty
<g(u)> =E , <g> =3 .

In order to justify (4) or (5) (which are not equivalent bounda-
ry conditions) the r.v.e. must have a large size with respect of the he-
terogeneities size, so that the stress vector o.n or the displacement
U on 3V fluctuate about a mean with a wavelength small compared with
the dimensions of the r.v.e.

However if periodic media are under consideration, and if the r.v.e.

is chosen to be the unit cell the fluctuations of these fields about
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their average are large, and (4) or (5) are to be rejected. For a
unit cell located at a sufficiently large distance from the boundary

of the heterogeneous body, the strain and stress fields conform at the
microscopic level to the periodicity of the geometry : ¢ and g are
"periodic fields'", in a manner which will be specified soon. However

it is already clear that the fields ¢ and ¢ , which depend on the
two variables x (macro) and vy (micro) are not exactly periodic throug-
hout the composite : depending on the macrovariable they can vary from
one place to the other, in a way similar to that of their averages I(x)
and E(x) . However their local variations, taken into account by their
dependence on y , are supposed to be periodic. The precise meaning of

these periodicity conditions is the following one :

stress ! the stress vectors o.n are opposite on opposite sides of 3V

(where the external normal vectors n are also opposite) ;

strain : the local strain e(u) 1is split into its average and a

fluctuating term
* *
e(u) = E + e(u) , <g(u)> =0 p

*
E 1is the Macro-strain, while u can be shown to be a periodic field,
up to a rigid displacement that we disregard. The final form of the pe-

riodicity conditions on 3V 1is :
. s s * * s as
o.n anti periodic s u =Ey + u u periodic. (6)

We term (&) (5) or (6) a set of "boundary conditions on aV" {fon the

pair (u,0) : (4) imposes stringent requirements on o and none on
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U, (5) imposes stringent requirements on u and none on ¢ , while
(6) imposes requirements on both fields. For a specified set of bounda-
ry conditions, a displacement field u satisfying the boundary condi-
tions will be said to be an admissible displacement fiefd, while a diver-

gence free stress field o satisfying the boundary conditions will be

said to be an admissible sitness #iefd. If moreover these fields satisfy
<e(u)> =0 s or <o> =0

they are called "purely fluctuating fields'" and a purely fluctuating
stress field 1is a seff equifibiazed stress field.

Once the boundary conditions (4) (5) or (6) , are specified,
the localization problem (3) is well posed (this assertion is to be
checked in details for each constitutive law). In the variational discus-—
sion of this problem, the equality of virtual work plays obviously an

lmportant role, and can be expressed in simple terms.

Proposition 1. Let o and u be admissible gields of stness and displa-
cements. Then the average of the microscopic work of o 4in the strain

field e(u) 45 equal to the macroscopic work T : E

<g:e(W>=3I:E . (D

In order to prove (7) for the three sets of boundary conditions

we introduce the purely fluctuating parts of o and e(u)

— — N Sk N
o=5L +0 » where <g > =0 , dive =0
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e(u) = E + e(ﬁ*) where <s(ﬁ*) >

=0 .
An easy computation shows that

<Tie@> =<@+o) te@> =T :E+ <o : e@>
and

<g:e(@> =<0 : (E + s(E*))> =3 : E+ <o : e(—ﬁ*)> .

A proper use of Green's theorem and of the equilibrium equations

yields on the one hand

<micro-work> =T 3 B + —— | .n.uds , (8

and on the other hand

<micro-work> =T : E + --l——f o.n.u ds . (9

If o satisfies the boundary conditions (4) , i.e. if o.n is
uniform on 3V , then —5*.11 vanishes on 3V and the equality (7)
follows directly from (8) . If ‘U satisfies (5) , then ‘ﬁ* vanishes
on 8V and (7) follows directly from (9) . If o and u satisfy
(6) , the boundary integral in the second member of (9) vanishes
since o.n takes opposite values on opposite sides of 98V , while u
takes equal values on these sets. This ends the proof of (7) which

holds true for the three sets of boundary conditions (4) (5) or (6) .

We shall term (7) the equality of virtual wonk(+) between the micro-

) (7) has sometimes been termed (7) HILL's Macrohomogeneity equality,
or HILL's condition.
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Scopic scale and the macroscopic scale.

Eggggg. The equality (7) plays a central role in any homogenization
theory. Up to a certain extent the boundary conditions on the boundary
of the r.v.e. have a minor importance provided that they ensure the
validity of (7) . However in some statistical theories (7) 1is inter-
Preted as an ergodic assumption, and deviations from it are sometimes

congidered (KRONER 8).

o s e e e s o e s e s

The boundary conditions (4) (5) or (6) and the equilibrium equa-
tions can be expressed in a more compact manner, especially convenient

for use of variational methods, namely

*
u=EKy +u . u €V

(10)

o € So = e(Vo)

where the space Vo of fluctuating displacements is one of the following

Ones, according to the type of selected boundary conditions :

~ * _ 1.3
case (4) Vo* == {u €W ; <eg(u)> =0}
case (5) v =7-= WenlmP;u =0 on av}
® v =v =i er'm?’; odi av}
case o = Vper u ; u periodic on .

*
The macroscopic strain associated to a fluctuating u vanishes.
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Therefore the equality of virtual work (7) yields

" > * * »
o admissible ¢ <ot e(u)> =0 for every u in V

i.e. o€ e(Vo)

.

The space of self equilibrated stress fields will be denoted by SE

SE = (0" € e(V)" ; <d'> =0

In the next sections it will be understood that a choice of the
boundary conditions, i.e. of the space Vo has been made among v s

or V .
per

-~

v
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CHAPTER 3

3. LINEAR PROBLEMS

We apply in this section the above considerations to linear consti-
tutive laws, linear elasticity on the one hand, linear viscoelasticity
on the other hand. It is to be understood that a choice of the boundary

conditions on 9V has been made, leading to a choice of V; .

3.1 LINEAR ELASTICITY

Localization

The localization problem (3) in linear elasticity reads as

a(y) = a(y) : e(u(y)) = a(y) : (E + E(u*(y))

(11)

div 6 = 0 , and boundary conditions ,

where E of I 1is given. Since the material is heterogeneous the 4th

order tensor of elastic stiffnesses a depends on the micro variable vy .
. . * . .

The fluctuating displacement u is therefore solution of the following

Navier equations

*
div (a : €(u )) = - div (a : E) , and boundary conditions. (12)
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Assuming that the elasticity tensor a 1is constant on each consti-
tuent, it is readily seen that the second member of (12) reduces to

body forces concentrated on the interface between the constituents :

div (a : E) = ({a] : E).rlGS n

rv
+ -

where [a] =a - a , and GS denotes

the Dirac distribution on § . .
- Figure 3 -
It is worth noting that this concentrated
loading is completely independent of the type of boundary conditions
(4) (5) or (6) which have been selected in order to carry out the locali-
zation procedure.

It remains to prove that the problem (12) admits a solution, when

% or E 1is given.

Proposition 2 . Under classical assumpiions on the elasiic tensor a
the problem ((2) admits a unique solution (o,e(u)) whatever is the
set o4 boundarny conditions (4) (5) on (6) .

E__given

Taking advantage of the fact that <o : €(v)> vanishes for every

v in Vo we obtain the following variational formulation of (12)

u €V
(13)

*
<g(v) 1t a:e(u)>=-<g(v) : a: E> for every v in Vo
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It can be proved that e((g) is a Hilbert space (Problem 3.1) , when
endowed with the scalar product <e : e'> (e,e' belong to e(VO» .
Then, under the classical assumptions of symmetry coercivity and bounded-

Ness of the elasticity tensor, the bilinear form
(ee') — <g : a:e'>

is symmetric, continuous and coercive on the Hilbert space E(Vo) . In

2 similar manner the following linear form is continuous on e(Vo)
g — <g :a:!E>

Thus, LAX~MILGRAM's theorem ensures existence and uniqueness of a solu-
. * * * . . .
tion ¢ =g(u) , u in Vo ,» for (13). Existence and uniqueness of
* '
e(u) = ¢ +E and of o =a : e(u) follow directly.

*
Since the problem (13) is linear, its solution e(u ) depends

linearly on the data E . More specifically let Iij denotes the ond

order tensor with components

Tiden =7 Giie 85n * S5 850 >

: . th
I the identity &4 order tensor has components

(D) (I..)

ijkh ~ “Tij’kh

and let e(xkh) denotes the solution of (13) when E = Ikh . e(xkh)

is the field of fluctuating strains induced at the microscopic level by

the 6 elementary states of macroscopic strain :
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1 0 0 0 0
Ill = 0 0 0 R 2 Il2 = 1 0 0 .
0O o0 ©0 0O 0 ©0
(extension in direction 1) (shear strain between directions 1 and 2)

. *
The solution e€(u ) of (13) for a general macro strain E 1is the

superposition of the elementary solutions e(xkh)

*
e(u ) = B £(xkh)

Finally the total field of microstrains amounts to

e(u) = E h(Ikh + E(th))

k

(D : E).

i.e. eij(u) = Dijkh Ekh = : i

= + .

th

D is 4 order tensor of Afrain £0ca£izaiion<+)

(14)

(15)

since it yields the

local strain £(u) in terms of the macroscopic strain E .

Once the localization procedure is known by

zation itself is straightforward :

(15)

, the homogeni-

+ . 1 .
+) also teEped “influence tensor" (HILL ), or "concentration tensor"

(MANDEL ™ )



I = <g> =<a:egu> =<a:D:E>=<a:D> : E
Then 3 = ahom : E where ™ = <3 D> .
. hom .
In order to prove the symmetry .of a » which does not

@Ppear clearly on the above expression, we note further properties of

the localization temsor D .
T
<p>=1, <D > =1,

and for every admissible stress field ¢

T — - -
< : ., = <D;. =<[(1,, + . =1,
DT s>y Diikh %kn” I Dwn * fen G900, > = By
. T - = . —
i.e. <D" : o> =1I for every admissible o (16)
The s . . . hom
equality (16) allows to derive an equivalent expression of a :
T T T

1 =<D" ;o> =<D":a:e(u>=<D :a:D>:E

i.e. ao® . <pT:a: D> (17)
Thi . . hom
1s last equality, which clearly shows the symmetry of a » can be
derived by energy considerations. Let us apply the averaging process to

internal energies (cf. (2)) :

B . ahom

]

N —

E& <pe> = <%— e:(u) a . E(U)>

™
]

I

Nof—

E: <Dt a:D>:E |,
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hom

.

which yields the expression (17) for a

We now consider the localization problem (11) when I 1is given :

*
ge(u) =e(u) +E=A:c¢ (E 1is unknown)

]

div o = 0 , and boundary conditions (18)

<g>

]

z (£ 1is known)

where A 1is the &th order tensor of elastic compliances, inverse of
a (A depends on the microscopic variable y) . Admit for a moment
that (18) has a unique solution o . Since the problem is linear its
solution depends linearly on the data I . More specifically if G,
denotes the solution of (18) with % = Ikh , we have

a(y) = Iy G

Let us define the 4th

order tensor of Afress Localizafion C , by
Cijkn -~ Crandij °

then 0 = C @ T (19)

This last equality allows to compute the tensor of macroscopic elastic

compliances

E=<g(u> =<A:o>=<A:C>:71
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ie. AP <p:ce> . (20)
Further properties of CT help to prove the symmetry of Ahom :
T . _
<C'> = 1 , and for every admissible strain field =(u)
<cl i e@>,, = <cf > = <(C..) @ >
PRy ijkh Skn (W~ = <€ Ekn®
by the equality of virtual work
= < . < > = ~-. .
(Cij)kh> ekh(u) ElJ

Therefore

and AP? = <cT A c> (21)

It remains to prove the existence and uniqueness of a solution of
(18) . Taking advantage of the fact that <7 : eg(u)> vanishes for
every self equilibrated stress field Tt , we obtain the following varia-

tional formulation of (18)

(22)

<g-octA:g>=0 for every o in K

where K

{c e E(VO) ; <g> =73} .

Under the classical assumptions of symmetry, coercivity and bounded-
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ness of A , the bilinear form
(1,06) > <1 : A: o>

is symmetric, continuous and coercive on LZ(V)z . K 1is clearly a non
empty closed convex set of this space and LAX~MILGRAM's theorem ensures
the existence and uniqueness of a solution o of (22) . Existence and
uniqueness of e(u) = A : ¢ follows directly. This ends the proof of
proposition 2 .

Note that we can write (22) in an equivalent form

g€ K
(23)
<t :A:g>=0 for every T in SE
Equivalence_between_imposed strains_and_imposed stresses
0 . . . .
The tensors ah ™ and Ahom constructed by imposing either a given

E , or a given I are inverse tensors, provided that the Aame boundary

conditions (4) (5) or (6) have been chosen to solve the localization

problems. Indeed using the symmetry of ahom we get

ghom . jhom _ hom T . hom T . .5 . <p ;0>

. e as T .
But we notice from the true definition of D and C that D~ : a 1s an

admissible stress field

T
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while A : C is an admissible strain field

(4 khlm Akhrs 1m rs

Then by the equality of virtual work

<pl ta> : <Aa:C>=<D':a:A:cCc>=<Dl:c>

T

[

<D"'> : <¢> =1,

Once the boundary conditions have been chosen among (4) (5) or (6) or

any other type (see Problems), we can compute several pairs of elasticity

tensors
vV -V ahom , Ahom
o
v = v ahom , Ahom (24)
per per per
v = v ;hom , xhom .

As it has been proved previously the compliances tensors and the
Stiffnesses tensors computed by the same type of boundary conditions are
inverse. However we point out that constructing the stiffnesses tensor
by the assumption of uniform strain on 3V , and the compliances tensor
by the assumption of uniform stress on 3V leads to an approximate
theory, since these two tensors are not rigourously inverse. As pointed

out by HILL | and MANDEL >

ghom:Ahom -1 = 0((%)3)
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where d is the typical size of the heterogeneities, and & is the ty~
pical size of the r.,v.e. . For large r.v.e., containing of large number
of heterogeneities the ratio d/% 1is small, and the choice of the boun—
dary conditions is unimportant. However for periodic media, when the
r.v.e. is taken to be a unit cell, d and & are of the same order, the
different boundary conditions lead to substantial differences.

It can be proved (cf. Problems) that the strain energies defined

by the 3 tensors (24) are ordered in the following way

N
E : ahom : ESE: a + EE : ahom : E

(reverse inequalities for compliances).

For a periodic medium, the assumption of uniform strains on 98V overes—
timates the stiffnesses, while the assumption of uniform stresses on 9V

underestimates it.
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3.2 LINEAR ELASTICITY., COMPARISON EXPERIMENTS/COMPUTATIONS

We turn back to the tensile tests on perforated thin sheets, perfor-
med by LITEWKA & al 2 as described in the introduction. In view of the
Periodicity of the structure the r.v.e. is chosen to be the unit cell.

The boundary conditions are of the periodic type (6) and Vo equals

v

per ° Since a solution in a closed form seems to be unattainable, we

solve the localization problem (13) (imposed macroscopic strain) by a
finite element method. The computations are performed under the plane
Stress assumption and the only elementary macroscopic strains which are

of interest here, are

1 0 0 0 0 1

11 12 ~

Since the heterogeneities considered in this example are voids we
heed to comment the definition of the macroscopic strain and stress.
Indeed the expressions I and E are ambiguous since o and & are
Dot defined in the hole. However assuming that the void consists in a
infinitely soft heterogeneity, we can extend the fields o and u,

N — (+ —
into ¢ +) and u everywhere defined on the r.v.e. . Thus

\—“‘———-———-—
(+)

o clearly vanishes in the void



— 1 — 1
=<c..>=~———-f dy=——f .. dy
S N N T
1 — 1 1 —
E.., = <g,.(u)> = —— f e..(u)dy = wwu-f ~(u,n u.n,)ds
1] lv|] v 1 lv| av 2 %3 *
1 1
= — f =(u,n, + u.n,)ds
fy| ov 2 1

*
where V denotes the r.v.e., including the hole T , V denotes the

. *
material part of VvV, V =V -T

» and where we have assumed that T
does not intersect 3V (hence U =u on aV) . With this modified

definition of I and E , the whole preceeding section remains valid.

The finite element computations required to solve (13) with

E = I11 » I, 5 I, are standard, except for the periodicity conditions.
However these periodicity conditions reduce to ordinary ones if the unit
cell admits two orthogonal axis of symmetry. In the examples under consi-
deration here, the unit cells are symmetric with respect to the lines

v, = 0 and Yy = 0 . It is easily shown that the periodicity boundary

conditions reduce to usual ones indicated on figure 4 below, and that

the computations can be carried out on a quarter cell
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- Figure 4 -

However in two important situations we cannot get rid of these pe-

Tlodicity conditions

a) when the unit cell has no axis of symmetry. In this connection
DUVAUT 9 and coworkers studied the influence of the shape of fibers cross
Section on the macroscopic stiffness of unidirectional composites, and

the reader is referred to this work for more details.

b) when non linear materials are under consideration, the super-
Position principle (14) no more applies and it is not possible to sepa-
Tate the extension part and the shear part of a general macroscopic
Strain E , in order to carry out the numerical computations.

A survey of a few direct numerical procedures accounting for the

Periodicity conditions is given in DEBORDES & al 1o and MARIGO & al H
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Diagonal perforation pattern

Figures 5 & 6 show a few numerically computed microscopic strain, or
stress states. The deformation of the perforation, and the stress con—
centration on its boundary are evidenced. A few noticeable facts deserve

brief comments :

a) the deformation of the perforation is mainly due to the fluc-
tuating strain e(x) which accounts for the heterogeneity of the mate~

rial.

b) the deformed state corresponding to a shear macroscopic strain
IIZ clearly shows that the strain is nof unifom on 3V since straight
lines do not remain straight lines. Indeed in most of the computations
that the author has performed, the most significant differences between
the various types of boundary conditions were observed on macroscopic
strains of Aheat (with respect to the axis of the unit cell), and these

differences resulted in significant variations of the shear moduli.

c) the agreement between the computations performed with the

periodicity conditions and experiments is quite satisfactory.



- ¢ @9and31g -

¢
Il
B
X

P
e
P 3

X A7

P SINATE

i
K :
S WAWASE ) TIAVAW: 1 it \
= O 71 AN
MUV &.mv\V«v‘.ﬁm R »

R

- ysap I.Xl... :

e N
uxejjed [rUOS®RI(Q - *_ « «JJ/
=

i

gee



224

I

i 1 SR
I11 ! III lllttl
byt U 11

!
‘” ! t ! ¢ | ! I}iﬁf}?
t‘H toy ottt
‘ 1 ! RN
{!{‘\II ! 111 11”
ATTLIC IS A
TR II 3‘t 1!x

L= L=
0 1
microscopic stresses on a quarter cell
$ ;/;o
A  NMomogenization
19 O IExperiment
Y ——
3 s E = 0.6955 10° MPa
\ ° )
R v, = 0.3
\o
A
\2
[+] —— "4
i ///’ 5
/// 5
45° 30* a
L) ¥

Figure

6




225

(+)

The three types of boundary conditions (4) (5) or (6) are compared
on the square perforation pattern. The stiffnesses predicted by the 3
theories are ordered in the way that energy arguments indicate : overes-
timate by phe uniform strain theory, underestimate by the uniform stress

theory.

AV AV 1 [ :
VAN Ela}/E,

L
N

o

Mesh

Qs 4 + +

+

Square pattern
Uniform strains on 3V

Periodicity conditions

Experiment

> % ® o

Uniform stresses on 3V

Stiffnesses/orientation
- Figure 7 -
e

+ .
™) The numerical computations forlfhe square perforation pattern have
been performed by J.C. MICHEL
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3.3 LINEAR VISCOELASTICITY
We consider an assembly of viscoelastic constituents obeying the

MAXWELL's law :

e(U(y)) = A(y) : o(y) + B(y) : oly) (25)
where A and B are 4th order tensors endowed with all the recommended
properties (symmetry, boundedness, coercivity). Maxwell's law (25) has
a "short memory" since it does not involve any creep function accounting
for long range memory effects. The main result of this section is the

following one.

Proposition 3 .  The macroscopic Law derived from (25) A4
3 N . t . N
E=A"": 32+ [ J(t-s) : £(s)ds + B'°" : 3 (26)
0

where the kernef J will be specified in the Text.

Therefore the homogenization procedure gives rise to Long memory

effects, characterized by J . A similar result for KELVIN-VOIGT's

materials was pointed out earlier by SANCHEZ & al 13 and FRANCFORT &

14
al .

Localization

As in the elastic case the main point of the homogenization proce-
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dure is the localization problem. We assume that the macroscopic stress
tensor follows a given path £(t) and we search for the microscopic

state o(t) , £(u(t)) thereby induced. The localization problem amounts

to

-

* ° '*
At o+B:o0==gc()=E+c¢e(n)
div o = 0 , and boundary conditions (26)

<o(t) > = T(t) .

Applying the Laplace transform to (26) yields

D2

QA +BY6(A) = BOY + e(aT ()

div 6(\) =0 , and boundary conditions 27

<5 > = 50

’

where o(t) is taken as vanishing in t = Q0 . Therefore we are let with
a localization problem for a fictitious elastic material with elastic
compliance AA+B . Let us denote by C()A) the stress localization for

the latter operator, solution of the following variational problem

<7t 3 (A+—§: B : C(M)> =0 for every T in SE

(28)
<cy>=1 , cE W)

.

A . . .
Let us denote by C and CB the elastic stress localization tensors
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associated with A and B respectively, solutions of the following
variational problem
<> =1 , cPe e(v,)
(29)

>

<t :B:C 0 for every 1 in SE
. . A
(similar problem for C ) .

* *
We set C (A) = (C(A) - CB)/)\ and we note that C (A) satisfies

*
C ()) € SE

*
<r:)\A+B:C()\)>+<r:A:CB>=0 for every 1T € SE

Using (29) for CA yields another expression of the second term of

the above equality :

*
and C (\) satisfies

*
C (A\) € SE, and for every T in SE

* *
<t:arC ) - +B> e <> =0 .

*
It is readily seen that C (\) 1is the Laplace transform of the fourth
order temsor C(t) solution of the following evolution equation
C(yese , C@ =c*-cB
(30)

<t :A:C> 4+ <1T:B:C>=0 for every T in SE
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which admits a unique solution C(y,t) . Coming back to C(A) we see

that
*
c) = AC Oy +cB
and
-~ -~ * -~ -~
G(A) =C() : T =C() : Az +CP g,

. . (+) .
Applying the inverse Laplace transform yields
t . B
o(t) = [ C(t-s) : £(s)ds + C° : x(t) .

0
This completes the localization procedure.
Homogenization
Noting that
A R t . .
(t) = C T(t) + [ C(t-s) : I(s)ds
0
we obtain
A . t . .
ge(i) =A:C : I+ f [A: C(t-s) +B : C(t-s) ] : I(s)ds
0

+ B CB : T(t)

where A , CA s B, CB and C depends on the microscopic variable vy

Averaging gives

S Note that ZI(t) = 0 since o(t) =0,
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. . t .
E=A"" 2+ [ J(t-s) : Z(s)ds + B™°" : I(t) (31)

0

where J(£) = <A : C(g) +B : C(&)> .

This completes the proof of proposition 3 .
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CHAPTER 4

4. FAILURE OF DUCTILE HETEROGENEOUS MATERIALS

4.1 EXTREMAL YIELDING SURFACE

We assume that each constituent of the composite has an extremal
dungace which delimits the set P(y) of all stress states that the

Material can physically admit
o(y) € P(y) yEVv (32)

The behavior of the material is not further specified, the only useful
information being the constraint (32). In most examples P(y) 1is defi-

Ned by means of a yield function £(y,0)
B(y) = {0 | £(y,0) <0}

Since the microscopic stress field is constrained its average the
Bacroscopic stress has to be constrained too. More specifically let us

assume that the yield locus P 1is defined by means of a (semi) norm ! |

P(y) = {o | llol < co(y)}

Then
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izl < <ol > < <co> (33)

For instance if the norm under consideration is that of the equiva-

lent stress
_ _ .3
fol = Geq = (3 o
then (33) amounts to

Zeq < <o°> (34)
(33) provides a crude but simple upper bound for the macroscopic extremal
yield locus, which remains to be defined in a more specific way.
For this purpose we note that, in order that a macroscopic stress
I can be physically attained it must be possible to find a microscopic

stress field o fulfilling the following requirements :

i) <g> =%

ii) div o 0 and boundary conditions.
Note that i) ii) express that o 1is in equilibrium with I .

iii) o(y) € P(y) for every y in V ,

It is therefore natural to consider the following set of macroscopic

stresses @

phom _ {zx & ]ngs such that there exists o satisfying

<g> =31 , O'EEZ(VO) , o(y) € P(y) for every y in V} (35)
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Let us now assume that P(y) exhibits further properties :

i) P(y) 1is a closed convex set in Rz . Then simple arguments
show that Phom is a closed convex set in Rz. Convexiiy is a stable

broperty undern homogenization.

ii) For every y in V P(y) contains a fixed ball of center 0
and of radius ko >0 . Then Phom is a non-empty set since it contains
the ball of radius ko and of center 0

Having shown that all physical macroscopic stress states I must
lie within pMO™ , the question arise whether all states I in phom
are physical macroscopic stress states : the microscopic stress field
associated with I should be related to a microscopic admissible strain
field by the local constitutive law. If we do not further specify the
Constitutive law, the answer to the question is no : in the vocabulary

15
of SALENCON pPOM i ¢ the set of "

potentially safe'" I , and not
of safe I . However if we consider elastic plastic constituents obeying
the normality rule, it can be proved through rather technical functional

. s s . hom
analysis arguments that all stress states in the interior of P can

™ for elastic brittle cons-

be attained. On the contrary,computing pho
tituents.,as are most of the fibers in composite materials, could lead
to a serious overestimate of the strength of the composite (see in this

. . hom . .
Connection WEILL ) . Therefore the computation of P will give a
reliagble prediction of the failure of a composite materials, only if
the constituents are-elastic plastic (or rigid plastic).

Throughout the following Lt will be assumed that P(y) 44 a closed
Convex et and that the constituents obey the normality rule.
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Rigid plastic_constituents

Asgsume that the local constituents are rigid plastic and obey the
normality rule. The inequality of maximal plastic work at the microscopic

level, is valid for every y in V and reads as

o(y) € P(y)

_ . (36)
e(a(y)) : o —o(y) <0 for every o in P(y)

hom

Let I be an element of P to which corresponds Eky) at the

microscopic level by (35) . Then averaging (36) and applying the
equality (7) of virtual work yields

5 € Phom

hom (37

e

T -32<0 for every I in P

.. . . hom —_ .
If ¢ is in the interior of P we can take T 1n the form

- *
I =13 +3Z

* . 9 . . s
where I is any vector in IRS with a sufficiently small norm, such

that T 1lies in Phom . Then (37) yields

M *
E: I <0
* . - - a . .
for every £ with a sufficiently small norm. This last inequality

* .
applied to *I turns out to be an equality, and to be valid for every

* .
bX (multiply it by any scalar value).
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Thus E = 0 , and the composite is rigid if I 1is inside Phom .

The only possibility of straining occurs when I is on the boundary of

Phom

Therefone the composite 48 nigid plastic, its domain of admissible
Stnesses is exactly PPO™, and it obeys the nommality nule.

4'2 DETERMINATION OF THE EXTREMAL SURFACE

It follows from its true definition (35) , that the determination
of Phom amounts to the resolution of a limit analysis problem on the
T.v.e., where the loading parameters are the components of I . Clasgsi-
cally this 1limit analysis problem can be solved either by the inside,
through the construction of statically and plastically admissible fields,

Or by the outside through the evaluation of the plastic energy rate dis-

Sipated in strain fields leading to ruin.

Determination by the ingide

A direction :° of macroscopic stresses is fixed and we consider
P

the following onedimensional limit analysis problem

Xo = sup {A such that there exists ¢ satisfying

<g> =2Ar%, o€ E(Vo) , o(y) € P(y) for every y in vV} (38)

X°Z° is on the boundary of Phom .



- Figure 8 -

Determination by the outside

. . . . hom .
Let us consider a macroscopic strain rate E . Then P is the

intersection of the following half spaces
H(E) = {T | T: E<D(E)} (39)
where 7 denotes the energy-rate plastically dissipated at the macros-

copic scale in the strain rate E . 0 is computed by means of the

averaging procedure :

D(E:l) = <d(y,e(0)) > . Inf <d(y,e(u) > (40)

;-Eye Vo

al
o

where d(y,e) = sup
o € P(y)

Indeed we shall prove the following inclusion
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PO H(E) 41)

letting the proof of the reverse inclusion to the reader. Let I be an
element of P™™ and o one possible microscopic stress field fulfil-
ling the requirements of (35) . E being given, let u be any admis-

8ible digsplacement rate satisfying

% - .
u =u - Ey € vo (42)

Then by the equality (7) of virtual work:

I E=<g:e(@><<_sup 0:ew>=<dy,e(w)>
o € P(y)

Taking the infimum over all admissible displacement rates u satisfying

(42)  yields

.

I : E<D(E) for every E € IRE

9

Which proves that ¥ belongs to H(E) for every E in ]RS .

. . . om
Numerical determination of Ph .

In order to numerically determine Phom we golve an auxilliary
®volution problem for a fictitious elastic perfectly plastic material
°beying the normality rule and admitting P(y) as its local yield locus.

Two types of loadings can be considered. Either a direction of

Macroscopic stress I° is specified,and the evolution problem yields
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. . 12 . .
asymptotically a solution to (38) (MICHEL ) . Or a direction of

macroscopic strain rate is specified and the macroscopic stress of the

evolution problem follows a path within Phom which ends as t goes

-

to + on the boundary of Phom’ at a point I_ which admits E° as

17
external normal to the extremal surface (SUQUET ) .

E°
[+] Zoo
z (L)
xoz°
0
Phom
-~ Figure 9 -

For more details the reader is referred to DEBORDES & al where nu-
merical computations show that the two above loadings give very similar

results for Phom .

Influence of the boundary conditions on__3V .

The variety of boundary conditions which can be imposed on 3V ,

leading to various possible choices of the space Vo s allows to define

. ~ e *
at least three different sets Phom : Phom s szr s Phom . In the defi-
nition of Phom the stresses are supposed to be uniform on 3V , 1in the

definition of P;zr they are only supposed to be periodic, and no

assumption on the stresses on 3V are involved in the definition of

“hom . . . . . e
P » Since the other requirements contained in the definition (35)
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hom . . .
of p are identical for the three sets, the following inclusions are

easily gtated

Phom c Phom c ﬁhom 43)
per

Using the embeddings Vc Vper C V , we derive the following inequalities

On the plastic digsipations which also result from (43) :
n,
P<D <3 (44)

If periodic media are under consideration, (43) asserts that the as-
Sumption of uniform stresses on 8V will give an underestimate of the

Strength, while the assumption of uniform strains on 3V will overesti-

Mate the strength.

—— i s

P has been introduced in the above form by the author 18, for pe-

Tliodic media. However previous works similarly based on limit analysis

Contained more or less explicitely the above definition (35) of phom

1 19 20 21 22
HILL ° , DRUCKER ~ , SHU & al -~ , M® LAUGHLIN  , LE NIZHERY () |

23,24 . . .
More recently DE BUHAN ~ reached a similar result for multi layered

Wedia which amounts to (35) for periodic stratifications and illustrated

hom

his work by interesting analytical determinations of P in connection

\M
{+)

further references might be found in HASHIN 4 section 7 .
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. . . . . . 2
with Soil Mechanics problems. In a different direction, GURSON > has

proposed a yield criterion for porous materials, and his arguments almost
amount to the computation of TD(E) . He did not used the entire space
Vo , but rather a Riesz approximation of it, splitting the field u

which enters (40) on a basis of displacement rates derived from solu-

tions of linear problems.

4,3 COMPARISON EXPERIMENTS/NUMERICAL COMPUTATIONS
We go back to the experiments by LITEWKA & al reported in the intro~
duction and compare them with numerical results taken from MICHEL 12 and

11
MARIGO & al .

In the tensile test reported on figure | the macroscopic stress

tensor, when expressed in axis (1,2) , takes the form

. 2 .
sin o sin o COs O 0
T =X sina cosa cos? g 0 = Az°%(a) (45)
0 0 0

We use the definition (38) of )\r(a) where it appears as an uppe?

bound :
° hom
A (@) = sup {A | Az°(a) € P70}

In order to solve (38) the computations are performed on the square
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Perforatjion pattern, and the virgin material is idealized as an elastic-
Perfectly plastic one. Therefore the hardening part of the stress—~strain
Curve is not correctly reproduced, but this lack of precision does not
affect the value of the limit load. The elastic properties of the virgin
Material are specified in section 3 , and we note on figure 1 that

its ultimate equivalent stress is
0 = 159 MPa .
o
It will pe supposed to obey the Von Mises criterion

o < g
eq o

The specific numerical method used to solve (38) 1is described
in details in H . Let us only comment briefly on the periodicity boun-
dary conditions. In elastic problems on a r.v.e. exhibiting symmetries,
¥e have reduced them to ordinary ones, mainly by means of the superposi-
tion principle. However, in the non-linear setting under consideration
here, tensile stresses and shear stresses cannot be decoupled, and for
the general stress I°(a) we cannot get rid of the periodicity conditions.
A Survey of possible methods of resolution of problems involving periodic
boundary conditions (penalty, elimination, Lagrangian...) is given in
DEBORDES & a1 'C .

We have plotted on figure 10 the external stress strain curves,

Computed on the idealized material at various inclinations o . We can

deduce from this figure the values of the ultimate loads Ar(a) .
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Figure 1) reports the results of experiments, of the homogenization
theory with periodicity conditions, and of the homogenization theory
With uniform strain on aV . The agreement of the former theory with
€Xperiments is quite satisfactory, while the results of the latter (uni-
form strain) are overestimated in an obvious manner in agreement with

Previous congiderations (43) .

This observation leads us to the following important comment.

In elasticity, the boundary conditions seemed to play a minor role
Since all local effects due to deviations in the boundary conditions
Vere smoothed out. However, in plasticity local effects play an impor-
tant role, and the deviations in boundary conditions ggéa§§eghe macros-
€opic scale. This fact has another interpretation. While it seems accep-
table to model random distributions of elastic constituents by a periodic
8Trangement, such an idealization will be hazardous for elastic plastic

Constituents.

Up to now the comparison experiments/computations was performed on
macrOScopic quantities (stiffnesses or rupture loads). This comparison
€an alge been made at a more local level on the shape of the rupture
Todes, Figure 12 shows that the agreement is still good, but this
holgs true only for the periodic boundary conditions, since it is clear
that when the plastic zone reaches the boundary of V the strain cannot

be any more closed to a uniform strain on av .
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CHAPTER 5

5,  ELASTIC PERFECTLY PLASTIC CONSTITUENTS

We now turn to the more difficult problem of describing the overall
behaViOr of a material made of the assembly of elastic perfectly plastic
fOnstituents, In the stress-strain curve of such a material a hardening
Part js strongly expected. This hardening effect, due to a micro-stored
elastic energy, will be described qualitatively and approximate models
will pe proposed. Most of the developments presented here are also valid
for Viscoplastic constituents.

The micro constitutive law reads as

e(u) = € + P , € =A:a (46)
and a(y) € P(y) for every y in V
ép(y) to-0o(y) SO for every o in P(y)

5.1 MACROSCOPIC POTENTIALS

The major part of this paragraph follows the line of MANDEL's work3

Chap, 7 devoted to the macroscopic behavior of polycristalline aggregates.
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We multiply (46) by the transposed tensor of elastic stress loca-

lization CT , and we average on the r.v.e.
<clie>=<cliaio> + <cT i P> =<g:a:c>+ <clie?

A:C and o are respectively an admissible strain field and an admissible

stress field. By the equality of virtual power (7) we get
<c¥ie>=<cl> . <e> =E ; <o:A:C>==<o>:<A:C>=me:Z
and

E=A : 1+ <g ot P> (47)

. . ho . . .
We recognize in A ™. I the elastic part of the macroscopic strain

and therefore the plastic part of the macroscopic strain is given by

EP = <¢' : P> (48)

It is worth noting that, generally speaking, neither the elastic part
nor the plastic part of the macro strain is the average of its microscopit

(+)

analogue .

+ . . . . . .
) a noticeable exception occurs when eP is compatible {(i.e. derives

from a displacement field). It can be the case for large strains,
when elastic strains are small.
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The averaging procedure for additive quantities described in section
2 allows us to compute the macroscopic internal energy as the average of
the microscopic internal energy. Since the processes under consideration
in this section are jisothermal the micro internal evergy reduces to the

elastic energy

1

p&=<pe> = <(e(u)-eP) : a i(e(u) - ePy> =-<o: A 0>

ro[—
N

We split the actual micro stress o into two parts : the one which
Would occur if the material were perfectly elastic and a self equilibra-
ted hesidual strness tensor (so called since it is the stress state under
8 null macro stress I = 0)

9(y) =cC(y) : £ + o' (y) (49)

Using this decomposition we get

E&= <g:A:o> =—;—Z: <CT:A:C>:Z + <of1A:C>Z +-;—<0r:A:~05

1
2
But A:C is an admissible strain field, while of is a self equilibrated

fielq, Applying (7) we see that the cross term <o' :A:C> vanishes.

We are let with

p&=L g, phom . o +—;- <g':iA:d" > (50)

» K

1
2

The first term in the above expression of & is the macroscopic elastic
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energy, and the second term is the sfonred enengy : it is the elastic
energy of the residual stresses and it is always positive except when the
residual stresses vanish. It will be shown later on that this occurs only
when the micro plastic strains are compatible, i.e. when they derive

from a displacement field.

In a recent work26 CHRYSOCHOOS has reported microcalorimetric expe~
riments performed on a AU4G in monotonic uniaxial tension. He has obser”
ved for this specific experiment that the stored energy reaches a thres-
hold when the plastic strain increases. This means that the ratio stored
energy/external work tends to O and not to 10 7 as it is classically
admitted by a somewhat hazardous interpretation of TAYLOR and QUINNEY's
experiments. The limitation of the stored energy can receive an inter-
pretation by means of the above arguments. Consider an assembly of elastif
perfectly plastic constituents each of them obeying a Von Mises criterion
(or any pressure insensitive criterion). It follows from the inequality
(34) that the deviatoric part ZD of the macro stress tensor is limited:
In a uniaxial tension test this deviatoric part can be expressed in terms
of the only non vanishing component of I and this shows that 1 itself
is bounded at any stage of the tension test. At the microscopic scale we
know from the Von Mises criterion that UD is bounded. If we can prove
that Tr o is bounded at least in the space L2(V) then - ¢ itself
will be bounded in this space at any stage of the test. Therefore by (49)

the residual stresses o  will be bounded in L2(V) and their elastic
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ehergy, i.e. the energy stored along the tensile test will be limited.

. 2 .
In order to prove that p = - !§L9 is bounded in L7(V) we notice that

the equilibrium equation yields

D
3p ) Bcij
axi 3 Xj

- [se] . » ”l
Since oD is bounded in L (V) , gﬁl is bounded in H (V) . A clas~

sical argument in the discussion of Navier—-Stokes equations yields

lp- <p>|, <cl2| | <c
L°(V) i B
But <p> = - Tﬁ3z is bounded by the above arguments. Therefore we have
Shown that P 1s bounded in L2(v) . This completes the proof of the

f°110wing result, evidenced by CHRYSOCHOOS's experiments : £n a monoftonic
Wlaxial tension test, the stoned energy of an assembly of elastic pen-
ﬁewkf plasiic matenials is fimifed. It is quite interesting to note,
f°110wing the lines of CHRYSOCHOOS, that the classical models of kinema=-
tical or isotropic hardening do not ensure this limitation of the stored
Chergy, although the mechanical behavior (i.e. the stress strain curve)
Predicted can fit experiments in a satisfactory manner for simple loadings.
If we remember the role played by the stored energy in shakedown or ac-
Commodation analysis it becomes obvious that the above property is not

30 academic one if it can be generalized to more complex loadings. It

also evidences the role that thermal experiments should play in the deter-—

Mnation of the mechanical behavior of an aggregate.
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Plastic work

The averaging procedure for additive functions allows us again to

compute the macroscopic dissipation as the average of the microscopic one*

D
It

<d>=<0:ép>=<CZ:;:p>+<cr:;:p>

i

T <CTép>+<or:ép>=Z:I§lp+<0r:ép>

In order to carry on the computation of U we note that the field of
. r . . .
residual stresses O has the following properties, which result from
its definition
o' € SE

(51)

Aot + P = e(ur)

where e(ur) =g(u) —A: C: I is an admissible strain field. Therefore

the macroscopic dissipation amounts now to :
D=3:EP + <o : e(@)> - <o¥ : a: "> (52)

Since o is self equilibrated the second term in (52) wvanishes

D=Z:Ep—<0r:A:r;r>=<0';:p>

.

Therefore the macro plastic work-rate I : EP does not reduce to the
average of the micro one <o : ¢P> | and the difference between these

quantities is the elastic energy-rate <o : A: ¢"> due to the deve~
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lopment of residual stresses. At the microscopic level the plastic work-
fate is entirely dissipated, while at the macroscopic level it is partly

dissipated (in the plastic micro mechanisms) and partly stored in the

.

Ncrease of the elastic energy of residual stresses :

Tt EP = <o s P> + <o i A 07>

.

Stability in Drucker's sense

Since the constituents are assumed to be elastic perfectly plastic

¥e know that at every microscopic point the following equality holds true

The decomposition (49) of o yields

<Cz:eP> + <o :eP> = <5:eP> =0
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But it follows from (51) and (48) that
<5r:ép>-z~<&r:A:ér>, <C:3z:eP> =71 :<CT:EP> =351 EP
Therefore

5 s EP = <g:eP> + <o :a:6"> 20 (53)

This last inequality shows that the composite material is stable in
Drucker's sense at the macroscopic level. It should be noted from (53)

. ‘T, ,. T . .
that, since <g :Aic > 1is always non negative, we have
1P > <o:P>

We could express this inequality by saying in a somewhat loosy man~

ner that the change of scale stabilizes the material.

Macroscopic_yield surface

We now assume that the composite material has been loaded up to
microscopic stress state o(y) with residual stresses Or(y) . The
macroscopic yield locus is the set of macroscopic stresses Z* which can
be reached from the present state I by an elastic path, along which
the residual stresses remain unchanged. The microscopic state c* satis~

fies

0*(y) - ao(y) = C(y) : (Z* - I) (54)

* * r
and o0 (y) =C(y) : £ + o (y) .
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e notice that the condition
* .
O (y) € P(y) for every y in V
18 equivalent to

* -
I € c(y) b, (P{y) - {cr(y)}) for every y in V and therefore

.

o ¢ [P - (6T} (55)
yev

The macro yield locus Phom({cr}) is a convex set (intersection of
Convex sets). Its determination at a given time t requires the knowledge
°f the whole set of residual stresses. Therefore it is not possible to
entirely eliminate the microscopic level from the macroscopic behavior,

38 it is the case in the elastic setting. However we can analyse in a
Ualitative manner the way in which the macroscopic yield locus is obtai-

n .
e in the stress space

* The set P(y) - {c"(y)} is translated from the original set P(y) ,
¥ithout change in shape, or size. This operation results in a kinematic

hardening .

. -1 .
* Multiplying the previous set by C(y) amounts to a rotation
and 55 anisotropic expansion of this set. This operation does not reduce

to isotropic hardening although it bears some resemblance with it,

* The last operation is the intersection over all y in V . This
s a Complex operation including a change in shape, a change in size,

nd 5 change in the center of the convex set. If the intersection is to
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be taken over a finite set of points y(+) the boundary of the set
hom, 6 r . oo . . .
P ({0 }) will probably exhibit vertices. Such vertices will be smoo-
thed off if the intersection is taken over an infinite set of points
++ . .
y ) . It should be noted that this smoothing effect is due to the

non uniformity of the residual stresses and therefore take its origin

mainly in the heterogeneous efasficify of the composite.

5.2 STRUCTURE OF THE MACROSCOPIC CONSTITUTIVE LAW

We now try to analyse in a qualitative way the structure of the

macroscopic constitutive law. We claim that the state variables are :

* the macro strain E

* the whole f§ield of micro plastic strains {P(y),y € v} . This
means an infinite number of internal wvariables.

Indeed, once these variables are specified the actual micro stress

state can be derived as follows :

a) I 1is deduced from E and {eP} by (47)

b) ¢* can be computed as the solution of the elastic problem (1

where ¢ is considered as a known quantity (analogous to a thermal

strain). The field o is a linear functional of the field &P

) this is the case if yielding is likely to occur on a finite set of
planes (monocristal) or if the residual stresses o' (y) , and the
yield loeci P(y) are piecewise constant,

(++)

this is the case if the r.v.e. is a polycristal with a large number
of grains.



255

o =-R:eP ie. of(y) = - [ R(y,yDeP(yNdy (56)
v

The integro-differential operator R can be expressed easily in

terms of the Green function of the elastic problem (51) , but we shall

MOt need its exact expression.
Once the state variables are identified one has to compute the inter-
nal eénergy of the material. We already knowby a previous computation that
- 1 1 r
08ﬂ=52 :ﬁmgz+§ <ot 1 A:g" >

80d we now express & in terms of the state variables (€,{ePD)

b & = —;— (E-EP) ahom:(E—Ep) +—;— <ot i (e - P>

Taking into account (56) and the fact that o is self equilibrated

We get

= 1
P &E,{eP) = %-(EHEP) : ahom(E—Ep) + 5 <reP : P> (57)

The astate Laws relate the thermodynamical forces associated with the

State variables, and the state variables themselves, The thermodynamical

fo .
TCes are defined as

s wm
3 a - P ’
E 3{eP)

a . .. .
Nd thejiy computation is immediate

38 hom
a

P = =

_P=
SE (E-E7) z
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and for a virtual field of microscopic plastic strainsg s eP

_ & |3
<-p 9 :6eP> = <ah°m(E—Ep)—§E—— :6eP> - <R eP 1 5eP>

3{ep}' (P}

=<z :cl 1 6eP> - <ReP:iseP> = <seP (C:Z+0r)> =<§eP:o>

The thermodynamical force associated with the state variable (P} is

the micro stress field {o} . Setting

a = {ef} , A=1{c} , P={rE€ E(Vo) »7(y) €EP(y) for every vy

in V}
. . 27,28 -
we can recognize the generalized standard form of the macro cons
titutive law :
_— 2& _ _ — 23&
state laws I =p SF . A — Ly
AEP (58)
complementary laws
(@, A'~A) SO ¥ A" EP

However, this information on the structure of the macroscopic law
is of little pratical importance since the constitutive law involves a
infinite number of internal variables o . The next section will be

devoted to the description of more useful, though approximate, models.

Remark. If the constituents are viscoelastic or viscoplastic a result

similar to (58) holds true. Indeed the micro constitutive law now



257

Teads ag
e() = e+ ¢ = a6 + Py, 0) (59)
y o0

vhere ¥ is the potential which defines the anelastic part of the strain

Tate. The relations (47) and (48) still define the elastic and anelas-

tic parts of the macroscopic strain. Moreover following RICE it can be

shown that the composite admits a macroscopic pofential from which the

anelastic part of the strain rate can be derived :

E40 - ég(z o) (60)
or7?
r
Where $(Z,0") = <p(y,0)> = <@(y,C:I+a > .
The complete form of the macroscopic constitutive law is
§ o ghom iy, 30 o or 61)

D>

Where the residual stresses o are found as the solution of the micros-

€opic problem

et = a 5% + -?% (z,05)
30

o' self equilibrated, e(u’) admissible strain field.

Once more the macroscopic and the microscopic levels are coupled by the

Presence of residual stresses.
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5.3  APPROXIMATE MODELS

Once the complexity of the homogenized law is recognized we turn to
approximate models in order to obtain more quantitative results. These
approximate models are based on an a priori feeling of the microscopic
distribution of plastic strains, or of residual stresses and more gene-

rally on the way in which yielding occurs at the microscopic level.

Piecewise constant plastic_strains

In this first approximate model we replace the constraints

o(y) € P(y) forn every y An v (62)

by the following weaker requirements

i=lyese,n (63)

where V has been partitionned into vl"“’vn , where I. is the

th

partial average of the microscopic stress on the i phase Vi
7 () z__l__j oydy = <o>,
[v.] v,
i i
and where Pi is the typical yield locus of voo- We note that
. [v.|
I =c, Z(l) with ¢, = L .
' v

The set P reduces to
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1 .
P=tloeewy ; @M. <o>,€P, , i=1l,...,n)

Then the normality law, expressed at the microscopic level and averaged
over each phases Vi , reads as

GEP
(64)

<:Ep(y) : oly) - o(y)>.1 < 0 for every ¢ in P, i=l,...,n

Tak} * *
dking G = g 4+ ¢ where 0 1is chosen such that

* * L
i (65)

We see that for every i = 1,...,n , and for every ¢ satisfying (65)

. *
<P > =0 (66)

*P

The classical theory of Lagrange's multipliers shows that € must be

Cop
Stant on each phase V.
i

€p(y) = ﬁ? for all y in v, .

After , time integration we deduce that e? must be constant on Vi .

The internal variables (E,{ep(y)}) reduce now to the finite set

(E,E?,,_.’EE) . For the sake of simplicity we shall assume that n

e . . . .
Quals 2 » 1.e. that the plastic strain depends on only two independent

Variables EP and EP
f m
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Py = e (» +E e (» (67)

=1 h . - v - . .
where em(y) in the phase Vm and 0 1in Vf v Vm (similar

s + . . . .
definition for ef)( ) . The microscopic constitutive law and the loca-

lization problem amount to find u and ¢ such that

*
e(u) =E +e(u) = A : 0 + Eg em + Eg ef

(68)

div 0 = 0 and boundary conditions

This problem bears a strong resemblance with (11) and, since it is

* e .
linear with respect to E , Eg . EP its solution u can be split into

£
*
= p P P P

u Ex + Em Xm + Ef xf \
where ¥ has been defined in section 3 , and where xg and x? are
solutions of

xp €V and for every v in V

m o o

(69)

<e(v) : a: e(xi)'> =~ <g(v) : a : 6m>

(similar definition for

The microscopic strain reads as

(+

the use of the subscripts f and m indicates that we have in mind
a matrix/fiber composite.
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e(u) =D : E + Eg E(XII;) + Elf’ e(xI;) (70)

and this expression allows us to compute the macroscopic energy by the

dVeraging procedure (2) . Computing the thermodynamical forces asso-

Clated with E , E:l . EI; yields

2& de Ju 3Ep P
e KL - = ) - e 3 H —_
P 5F 0 BE> <(g(aE) BE) a (e{u) ev) >

<DT:a:(e(u)*ep)>=<DT:0>=Z .

.

In the same way a straightforward computation shows that :

-~ 38 - 38 (£)
"p.—a.__..-_-c(g) = ¢ z(m),—pL=cf<0>f=cfZ
SgP m m m 3Eg
m

Moreover we derive from the averaged normality law (64) the following

Inequalities :

L 4 *
ErI; LD N Z(m)= <¢P Z:* -g> <0 for every I € Pm
m

. . ok
EIE : Z** - z(f)..: <P . Z** - O>f < 0 for every I € Pf

Now ye can give the general form of the macroscopic law : after resolu-

tion of the problems (13) (69) we can compute the macroscopic internal

Shergy & by the averaging process (2) . Then we set

f
o= (52, ED) , A = (o, 1 ,cfZ( ) B =(c P Xe P

-

the macroscopic law has the standard form :

_ — 38 - 3&
Z*Q—BE’A="Q%;
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*
A€ P and for every A in P

: *
(a: A -A)S O

Remark. The assumption that 6 and ef are piecewise constant is not
—_— m

essential ; therefore we can give to them more general values modelling
a non uniform distribution of plastic strains at the microscopic level.

The model is still valid provided that the equality (67) holds true.

In the second approximate model we assume that the yield criterion
is satisfied {;m average. Specifically it is assumed that the constraints

(62) , which take the form
f(y,0(y)) <0 for every y in V

are replaced by one inequality :
<f(y,0) > <0 an

and the set P becomes
P={c€ E(Vo) : <f(y,o0) > <0} .
The normality law for P reads as

cEP
(72)

k;-P(y) = i—g{- (y,0(y))
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and there ig only one plastic multiplier A for the whole r.v.e. V
Since the yield condition is expressed by a single inequality (71) .
As pointed out by MICHEL 12 the problem (51) of computing the residual

Stresses takes a very simple form if we assume that the yielding is go-

Vi . . .
€fned by the microscopic elastic energy

o:A:oc-k. (73)

1
f(y,{j) = ._2_

In thig eventuality (72) gives

.

P aia:o

and the problem (51) of evaluating the residual stresses is equivalent

to

(74)
A:s"+aa: o = e(@’) ~rA:C: I
is an admissible strain field we

If we remember that A : C : I

Btain that of is solution of the following evolution problem

Or € SE
(75)

<t :A:6"> +A<tr:A: 0 > =0 for every T in SE

the solution of which is
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ot (t) = e*()\(t)—)\o)cr(O) . (76)

The remarkable fact in (76) 1is that we are able to compute the

whole field of residual stresses as a function of a single parameter ¢ :

£(t) = e~()\(t)-—)\o)

77)
We note that the yield condition (71) becomes
%<(c:z+or) tA: (C: T +00)> - <k> <0
%Z:Ah°m:z+%hgz-<k><o (78)
where h = <o"(0) : A : " (0)> .

This last inequality (78) shows that the composite undergoes {sotropic
hardening, where the hardening parameter is & . It turns out that the
state variables of this model are (E,EP,E) , and the following lines
will show that this choice of state variables lead to a generalized stan-
dard form of the macroscopic constitutive law. Indeed the general expres-—

sion of the internal energy reduces here to

5 (B.EPp) =2 (EEP) : & (BEP) + ;b £

2

since <o' : A:ot> =h E°.

The thermodynamical forces associated with E , EP and £ are



— 3& — &
e, me X an, B ang =t (79)
3EP
We set
£ 2
& -1y, jhom, LA x>

F(z,A™) =5 IiA PIo+ o S s
and we note that according to (78)

F(z,4% <0 (80)

EP = <ct i P> = <c¥ i aa: o> =
:A:C>:Z+)\<CT:A:0r>

But <gl:A:o'> =<g' :A:C>=0 by (7) .

We are let with

2P _ ; ,hom - 3F 81
EP = 2 A PE ek gy (5,4)) 81

On the other hand

E=- g = Slz,a) (82)
Y £
€
It can be checked that A obeys the usual requirements of a plastic
Multiplier. The macroscopic constitutive law which consists in (79)-(82)

is therefore a generalized standard law. We can give further interpreta-

tions of the parameters entering the model :
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. the hardening modulus h is the elastic energy of the {nitial

nesdldual sthesses.

. the size of the loading surface defined by F (or similarly by

(78)) is

<k> ——lz»h g2

But since XA 1is positive, A 1increases and & decreases by (77) .
Therefore the size of the macroscopic loading surface increases and

approaches k asymptotically :

. the plastic multiplier is proportional to the macroscopic dissi-

pation. Indeed

.
.

D=<d> =<0 :eP>=<g:r:A: 0>

n
>
A
Q
>
Q
\Y

This last term either vanishes if <o :t A : 0> - <k> <0 or is equal

to Ak if<c : A : o> - <k> =0 . Thus

D = A<k>

. The stored energy decreases along any loading path, since &

decreases.

A significant advance in the modelling of the plastic behavior of

30
unidirectional fiber composite has been achieved by DVORAK & RAO who
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Proposed a model of kinematic hardening briefly described here below.
The matrix is supposed to be elastic perfectly plastic and to obey
the normality rule, with yield function f . The fibers are elastic and
aligned in the direction vy - The elementary volume is a composite
cylinder of external radius b , in
which a fiber of radius a 1is embedded

in the matrix. The loadings under consi-

deration are axisymmetric : traction or

]
§
] [
[} ]
1 1
! ! mafrix
l . - -
Efiber: compression along ¥ oo and equiaxial
! i stresses.in the plane (yz,y3) and this
! 1
] ]
! H loading is represented by a two components
vector I
- Figure 14 -

1
=g By *233))
We shall denote by C the part of the localization tensor which yields

the microscopic state in terms of I 1in the elastic range

o(r) = C(r)x

where r = (y% + y§)1/2 . In the elastic regime the maximal local
Stresses are located in the fiber and at the fiber-matrix interface.

The first assumption of DVORAK & RAO's model is that this property still
holds true in the elastic plastic range whatever is the field of (axi-

Symmetric) initial residual stresses. More specifically numerical experi-

Ments performed by these authors show that it is reasonable to assume that
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under any axtsymmetric complex Loading yielding
(83)
oceuws finst at the fiben/matrnix interface.

Assume that the composite is loaded from an elastic state in which
the residual stresses are o . Yielding at the macroscopic level occurs
as soon as plasticity occurs at the microscopic level, i.e. by virtue of
the above assumption as soon as the stresses at the interface reach the

yield limit. Therefore the macroscopic yielding starts as soon as

£(C(a)L + o' (a)) = 0 (84)

1

Let us set X = - Eﬂa)" o¥(a) . Then the condition (84) of macroscopic

yielding reads as :
gz - X) =0.

The above assumption, indeed rather weak, has allowed to derive the fol-
lowing remarkable result : the macroscopic yield surface undergoes kine-
matic hardening. Its center X moves in the space of axisymmetric loa-
dings, while its shape (characterized by g) does not change. It is
readily seen that this result is a general one, i.e. that if yielding at
the microscopic level turns out to occur first in the same points, then

the macroscopic yield surface undergoes kinematic hardening.

The generality of the assumption (83) does not permit to compute
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the microscopic fields of plastic strains or of residual stresses as in
the two previous examples. Therefore we cannot rely on thermodynamical
arguments to derive the hardening rule and the flow rule. However this
tan be done by direct means. The loading condition expresses the ortho-

gonality between dI -dX and grad g .

5
0 = dg = 2& (az, - ax)) +32i2 (dz, - dX,) = 0
_.} ety

Therefore there exists a multiplier dp such that

dX = dr - du (85)

In order to determine the multiplier
du  we assume that the increment dX
of the internal stress X, points

from X in the direction of the new

stress state X + dI (see figure).

The vectors dX and I - X + dI
- Figure 15 - must be colinear. Neglecting the

second order terms we obtain

(Z,-Xy)dry - (F, -X))dI,

du = 573 r
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The hardening law is completely determined by (85) and (86) .

Flow rule

The plastic part of the macroscopic strain satisfies

dE? g
D

= dA -

P dg
ey oz,

DVORAK & RAO determine the macroscopic plastic multiplier dX by assu~
ming further properties of the localization of stresses during the loa-
ding process. Their assumptions, based on numerical calculations, yield

the following expression for dXx :

] hom “2vg + (I-eg) /eg

1
=55 (E;'E; T Ay ) E, ) Xy
]
—1
where Cg denotes the fiber volume fraction and éﬁ;m and é;;m the

compliances of the composite relating I and E .
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CONCLUSIONS

The behavior of composites in the nonlinear and inelastic range is
Still a widely open subject where all further contributions would be
8reatly appreciated. We have tried to show that failure of ductile hete-
Togeneous materials could be predicted in a satisfactory manner by means
o°f a limit analysis study. Moreover we have proposed a few simplified
Bodels describing the macroscopic hardening of a composite. These models
are based on crude approximation on the microscopic fields, or restrict
the attention to specific loadings, and there is an important need of

further work in this direction.
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PROBLEMS

Part 2 2.1 Show that there exists infinitely many boundary conditions
ensuring the validity of the equality of virtual work and leading to a
well posed problem in (13) . Consider for instance an arbitrary partition
of V 1into BIV and 32V and impose uniform stresses on 9,V and

1

uniform strains on BZV .

2.2 Consider a thin sheet periodically perforated in its thickness. Show

that the natural boundary conditions on 3V are

g, . =0 1<i<3 for y3=,+_h/2
i3
rd
’ e s L,
4 I R P , * *
’ 27 s, Lol , _ . .
‘, = +
i /;’, e ’:/ // u(X Eaﬁy6 u(X u(X perlodlC

O”’C)/O"/O'x on oV

‘ iy2 SAPL antiperiodic on 3V

1 (1<a,8<2) .
- Figure 16 -

Prove that these boundary conditions ensure the validity of (7) .

2.3 1In the periodic setting can you relate (6) with the asymptotic

expansion theory.
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Part_ 3 3.1

Prove that e(Vo) is a Hilbert space, for the three pos-
sibilities Vo =V, Vper , [ , when endowed with the scalar product
<e : e'> , 1In a first step prove that

de>o(yuen' D Ju-<u>|,

< c ]e(u)] .
L (V)3 2 9

L]
. * . .
3.2 Prove that the solution e(u ) of (13) has the following varia-

tional property :

* - » . ._* -
g¢{(u ) minimizes among all e(u ) in e(Vo) the

Wicroscopic elastic energy

<(€(I1-*) +E) : a: (E(G*) + E) >

.

and prove that the minimum is E : ahom : E . Using the inclusions
Vecy C V prove that for every E in R
per s
E: 3" E<E:a®:E<E: s ;..
per
3.3 Prove that the long memory entering (6) 1is fading
-kt
(Je>0(3 x>0 [J(t)| <ce
3.4

Consider a KELVIN-VOIGT's material
o=a : e(u) +b: e(u)

Prove that the homogenized constitutive law is

.
.

t . .
£(t) = a™®™ : E(t) + [ K(t-s) : E(s)ds + b'°" : E(t) (cf. %)
0

where K 1is a kernel which you will specify.
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Part__4 4.1 Consider a stratified two phase composite material, in~

finite and homogeneous in the directions (yl’y2) and periodically hete-

rogeneous in the direction (y3) . Show that (cf. 24)

hom _ _ 1 2 1 1 2 2 1 _ .2

P ={o[Z=c 2 te, 17 5 per ,1teP, I, =1)
where P1 and P2 are the yield locus of the phases 1 and 2 .
Assume moreover that the two constituents are Tresca's materials

P' = {o | sup lokf-ozl < 2k}

k, 2

where % denote the principal stresses of o . Restricting your atten-

tion to 2 dim problems, show that

Phom = {z l sup lZ

- Zzl < 2¢(a)}
k,%

k

where o 1is the angle between 0y, and the direction of the major

principal stress.

Part_ 5 5.1 In case of a MAXWELL's viscoelastic material relate the
result (60)61) with the homogenized constitutive law established in
section 3 . Compute the macroscopic dissipation with the help of

(2) , and show that it was not possible to derive it directly from @6)-
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