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Abstract. — This work presents a few applications of the homogenization theory. Homo-
genization is the process which allows to derive macroscopic constitutive equations from
microscopic ones. The method is applied to elastic, elastic damaged, elastic viscoplastic and
plastic damaged media. A good agreement with existing bounds for elastic composites is
shown. Numerical results for elastic damage are presented. A general method of deriving
macroscopic constitutive laws for dissipative materials is proposed.

Résumé, — Approche par Homogénéisation de Quelques Problémes Linéaires et Non-
Linéaires en Mécanique des Solides. — On présente dans ce travail des applications de la
méthode d’homogénéisation. Cette méthode permet, pour des milieux périodiques ou
quasi-périodiques, de déduire les lois de comportement de certains milieux fortement
hétérogénes a partir de leur loi microscopique. La méthode est appliquée successivement
aux milieux élastiques (composites), élastiques endommagés (microvides), élastiques
viscoplastiques et plastiques endommagés. Dans le cas de milieux élastiques, elle est
comparée 4 des bornes existantes. Des résultats numériques concernant les milieux ¢lastiques
endommagés sont présentés. Un procédé général d’homogénéisation de processus dissipatifs
standard est proposé.

1. Homogenization in the large

Homogenization is the process in which a homogeneous medium is sub-
stituted for a highly heterogeneous one. This homogeneous medium must behave

1 present affiliation : Laboratoire de Mécanique Générale des Milieux Continus,
Université des Sciences et Techniques du Languedoc, Montpeilier, France.
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in a manner similar to that of the given heterogencous body, when the pheno-
mena of interest are measured on a scale which is very large with respect to the
size of the heterogeneities. This homogenization process has taken various
forms since the early works of Maxwell. In the Mechanics of Solids, the contri-
butions of Hashin-Shtrikman [11], Hill [12], Kroner [13] are the best known.
More recently, this theory has been fairly developed on its mathematical side
in several studies concerning mainly periodic media (Sanchez [24], Bensoussan-
Lions-Papanicolaou [3], Duvaut [97).

1.1. Why quasi-periodic media ?

Periodic media are quite commonly encountered in the human buildings.
But their study can be further motivated by the following remark : when dealing
with statistically homogeneous media, one can only obtain bounds on the
material properties. The simplest bounds depend on the ratio of the consti-
tuents, while more elaborate theories take into account anisotropy (through
correlations of higher order [13]). These bounds are exact in the sense that,
for each of them, a material configuration, respecting the data and whose
homogeneous properties are given by the bound, can be found. However in some
cases involving a mixture of quite different constituents these bounds can be
very deceiving. The same remark holds for highly oriented media, the aniso-
tropy of which cannot be well taken into account by the most convenient
theories.

On the other hand if we assume that the medium is quasi-periodic we
seriously restrict the generality of the geometry. Despite this drawback, for a
given geometry of the heterogeneities (that are distributed in a quasi-periodic
manner) we obtain a unique set of material properties for the homogeneous
body by the so called “homogenization theory”. This theory applying takes
into account the exact geometry of the heterogeneities and hence, accounts
for anisotropy.

Moreover, as we will see later, if we deal with a statistically homogeneous
body, for which classical bounds give an admissible result (i.e. the upper and
lower bounds are rather close to one another), the homogenization method,
applied with the assumption that the body is ideally periodic, gives a satisfying
result, which liecs between the two bounds, and which is often close to the
experimental results (cf. § 2).

Finally the homogenization method can be justified in a sense which
will appear more clearly in the sequel. We shall apply this method in various
situations : the study of the elastic properties of composites (§ 2), the construc-
tion of a model of damage for elastic media ( § 3), elasto-viscoplastic or elasto-
plastic composites (§ 4), damaged elasto-plastic media (§ 5).
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1.2. Notations of the problem

The body under consideration occupies a domain £ in R3. It exhibits
3
an € Y periodic structure in the following sense: Y = II 0, Y[ is the basic
i=1
cell. It is made from different constituents; one of these constituents can be
eventually absent (i.c. void). € is the similarity factor between the basic cell
Y and the elementary cell €Y which generates {2 by periodicity (see Fig. 1).
A point in the homogeneous body is referenced by its coordinates x = (x,)
(macroscopic coordinates), a point in Y is referenced by its coordinates
¥ = (y;) (microscopic coordinates), while a point of the heterogeneous body
is referenced by (x,y) x denoting the rough position of the point, and y
denoting the position of the point in the cell located “under x”. If Y is a fixed

set, the medium is exactly periodic ; if Y depends on the slow variable x in a
smooth manner the medium is quasi-periodic.

Figure 1. — The heterogeneous body. The basic cell.

We shall develop in the sequel one form of the homogenization method :
the most intuitive one is the mean values (or averaging) method. It is similar in
principle to what happens to a “short sighted” person who has just a rough
(or averaged) perception of a more detailed landscape. In a heterogeneous body,
the stress and strain fields (or any other field of state variable) are very oscil-
lating quantities. We are only interested in global information : in a first stage.
maf:roscopic quantities are derived from microscopic ones. For most physical
variables (but not for all of them) this procedure consists simply in averaging
on an clementary cell. The second stage consists in relating these macroscopic
quantities, using the microscopic constitutive law and the quasi-periodic
geometry : this micromechanics study leads to the homogenized law.
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1.3. Another method

Let us just make a few remarks about the convergence method, which is the
way of justifying all the developments : there exists in the problem a small
parameter e related to the size of the heterogeneity. We can (formally) expand
the heterogeneous medium (geometry + material properties) in terms of powers
of e:

QF=Q%+e¢Y (1)

where Q° is the homogeneous medium (geometry + material properties) we are
looking for. In the real body ©°f, which corresponds to a finite non zero value
of €, the stress and strain fields are denoted by ¢° and e®. The idea of the
method is to substitute for fields their limits when € tends to 0, which is rea-
sonable, since € is a small parameter.

0

6% = lim 6 €% = lim e®
=0

c—+0

The homogenized law relates the two limits (and eventually other state
variables).

In most cases, the two approaches (averaging and convergence) are equi-
valent. Although the second one is rigorous and justifies all the results obtai-
ned, we shall prefer the first one, which bears some resemblance to more classi-
cal methods [12] and which has a more physical background. The reader must
be aware that in certain circumstances this method is only formal.

2. Homogenization for elastic composites
2.1. The method

We consider here a composite material with two or more constituents (no
holes). We shall restrict our attention to periodic media, the extension to quasi-
periodic media being straightforward. Because of the periodicity of the geo-
metry, the constitutive law of the whole body is completely defined by the
data of the microscopic constitutive law on the basic cell and by the geometry

of the heterogeneities.
A}jkh ifyel
‘ Ajien V)= Aizjkh ify€2 (3)

Afyn if YE3

Figure 2. — The basic cell and its constituents.
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The constituents are assumed to be clastic (not necessarily isotropic)

and perfectly bonded. All perturbations are assumed to be infinitesimal. The
microscopic constitutive law is:

eij (u(x,¥)) = Agjn (V) 0 (x,¥). (4)

e(u(x, y)) and o (x, y) are the microscopic strain and stress fields. Our reaso-
ning is based on the following principle : at a macroscopic point x, the macros-
copic fields of strain, stress and free energy are the average on the cell of the
microscopic quantities. For a given function f(x , y) we define :

1 c3
©00=— jY f(x,y) dy = <f(x.y)>L (5)
Thus :
o® () =<o(x,y)>, e (x) = <e(u(x.y))>. (6)

Our aim is to obtain the constitutive law relating ® and e®, from (4) and
the periodicity of the geometry. Equivalently we can try to identify the coeffi-
cients Afjflih of a quadratic form in 6® 2 :

eff /0 _0y _ peff 0.0
6 )_Aijkh Oij Tkn" (7)

The elastic energy in the stress state ¢° is :

Ae:ff 0

1 1
wiT (6°) = EQGH (e%,06%) = 5 Miikn i Tin- (8)

According to the averaging principle we have :
effr 0 0y _
Q7 (™, 7) =<Qy. o(y), 7(y))>=<A,() O (> (9

where o(y) and t (y) are the microscopic stress states related to 6 and t9. We
consider the following elementary stress states T, :

1
Tiiing :5 (Sip Ojq + 8 5jp)3- (10)
Then :
igh = Qe (Tij. Tyep)- (11

; 'Y | : volume of Y.
We omit x for the sake of simplicity.

To avoid confusion with partial derivative we will denote the component (pq) of the
tensor Tj; by Tijpqg-
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From (&) we deduce that it is sufficient to know the microscopic stress
states Cj;(y) due to the six macroscopic stress states T;;. This can be done
with the help of the constitutive law (cf. 12)), the equilibrium equations (13)
(no concentrated forces) and the condition of average (14):

A(}/) Cij (y}:e(uij) i.e. qum CijII'S:Cpq (uij)in Y1, (12)
; 5]
divCy; = g 18 — €= 01in 'Y, (13)
9Yq
<C|J > = le LEL< Cijhpq > = Tijlpq' (]4)

But the so obtained problem is not well posed (boundary conditions are
missing) : the periodicity condition is now used in an essential manner. At a
certain distance of the boundary, the strain and stress fields are certainly perio-
dic. So, we look for a stress field C;; satisfying :

Cij n opposite on opposite sides of Y (with outer normal n) (15) -

and for a displacement field v;j inducing a periodic strain field. It can easily be
checked that such a displacement field is either periodic, or linear, or the sum of
two such fields (we disregard rigid displacements) :

u;; €DP(Y) (16)
DP(Y) = {u=(uj)cjc;. 4 = E; v +vi, E;; = <ejj(u) > v; periodic}

The problem (12) (13) (14) (15) (16) is not a classical boundary value pro-
blem in Y, since the boundary conditions are of a periodic type. However, it is

a well posed problem and it can be shown [26] that it admits a solution (Cij. uy;),

C;; being unique while u;; is defined up to a rigid displacement of Y. By virtue of
(9)and (11), we get :

A?jf;f(h =<Agin (v) Cijipg ) Cin s (¥) =, (17)
which are the coefficients of the homogenized law :

e = A?jf{h oF, - (18)

2.2. Alternative approaches

In the previous sections we derived the constitutive law with the help of equa-
tion (9). The equivalent homogeneous body was thus found by an equivalence

. 1{ 3u du
1 For a vector u we denote epg (W) -_~7(c—& + q)
2Mayq Gl Yp
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in energy. The same constitutive law can be derived by an equivalence in stress
(it is the so called dual method) or by an equivalence in strain (it is the so called
primal method).

2.2.1. Equivalence in stress
Taking the average in (4) yields :
eg = < Ai;pq (Y) qu (y) > ( I())

The problem is then reduced to expressing o (y) as a function of its ave-
rage ¢, which can be done very simply by solving the folloving elasticity pro-
blem on the basic cell Y :

o being given, find o (y) and u(y) such that -

e(u)=A(y)e(y) inY

dive(y)=0 inY

<a(y) >=a? (20)

o (y) n(y) opposite on opposite sides of Y

u(y) €EDP(Y)

Since the problem (20) is lincar we can split the data ¢® and the solution
o () in the following manner :

ogq =Tyning O (21)

%pa (¥) = Cynipg (V) o (22)

Cyp is defined by (12) (13) (14) (15) (16) which is just the problem (20) with
o0 =T,, . Then (19) yields. since ¢© is constant :

0 _ 0 .
eij =i Ai_ipq (Y) Ckhlpq (y) > Okh (23)
and we find the following homogenized law :
ff .
Afikn = < Aijpg ) Ciipg ) > (24)

The equivalence between the two formulas (24) and (17) follows easily from a
variation of Hill’s lemma :

Lemma: Let u be an element of DP(Y ) and t be a microscopic stress state such
that :

div T (y) = 0in Y, t n opposite on opposite sides of Y, then

<rte(u)>=<t><e(u)> (25)
Applying this lemma with u= Uy, and t = Cij yields the desired result.
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Remark 1 The fourth order tensor C with components Cyj)y), is called the
“clastic stress localization tensor’ since by virtue of (22}it gives the micros-
copic stress as a function of the macroscopic stress.

2.2.2. Equivalence in strain :
We can invert the constitutive law (4)

0y (¥) = ajipq (¥) €pq (u(¥)) (26)
Then we obtain by averaging :
05 = < ajjpq (¥) epq (u(¥)) > (27)

The problem is now reduced to expressing the microscopic strain e(u(y)) in
terms of its average e?. This is done by solving the following problem :

e® being given, find a(y) and u(y) such that :

o (y) = a(y) e(u(y)) in Y
dive(y) =0 in'Y
<e(u(y)) > = e° (28)
o n opposite on opposite sides of Y
uEDP(Y)

The problem (28) is linear; the data e® can be split into elementary data :
®pq = Rn Tknipg

and the solution u(y) of (28) can be split into elementary solutions :

ugy)y= eﬁh Wi (¥) (29)
where wy, denotes the displacement solution of (28) with e® = Ty,. Then :

eq (U(Y)) = 0% €pg (Wen(¥) (30)
By virtue of (18) we obtain :
0% = < 8jjpq (V) €pq (Win (¥)) > eps (31

and the homogenized constitutive law is the defined by :
difin = < Bijpg (¥) Cpq (Win (¥)) > (32)

Remark 2 - 1t can be proved that a¢ff and Aeff are inverse tensors. By the
variation of Hill’s lemma it can be shown that :

affh = < angre (¥) Cpq (Win () € (Wi (¥)) > (33)
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Remark 3 — The fourth order tensor ¢ with components eij('wkh) is called the
“elastic strain localization tensor™ by virtue of (30).

2.3. Anisotropy

2.3.1. Theoretical

For an arbitrary heterogeneity the homogenized law is completely aniso-
tropic (a fortiori if the constituents are already anisotropic). Its definition
requires the solving of 6 elastic problems corresponding to the 6 elementary
macroscopic states of stress (in the stress approach) or of strain (in the strain
approach). The solutions of these problems obviously depend on the shape of
the heterogeneities : this leads to the macroscopic anisotropy.

2 [la {1 la]
' ﬁ‘nuni/ @

Figure 3. — Symmetries of the basic cell.

However the degree of anisotropy can be reduced because of the symmetries
of the basic cell (geometrical + material symmetries). If we consider for ins-
tance a fibrous monodirectional (Fig. 3) material F. Léné [16] has established
the following points :

a) Cross section of arbitrary shape. 13 coefficients are required to
define the constitutive law which has the following form :

o} Qi Qpagn Q 0 0 20 ef
i1 1111 Y122 V133 =Y 11
0 0

022 Q2222 Qo233 O 0 2Qp3 €39
0 0

O33 Q3333 0 0 2Q3334 €33
0 - 9 0

012 2Q1212 0 0 €12

a® 2Q 20 e
23 =N2323 <2331 23

0 ) 0
013 sym. 2Q4313 €13
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b) One symmetry. — If the cross scction possesses a symmetry with
respect to a coordinate axis the number of coefficients reduces to 9 (orthotropy)
and the elastic problems can be solved on a half cell.

Q131 = Qo231 = Q3331 = Qaaa1 = 0.

¢) Two symmetries. — If the cross section of the basic cell possesses two
symmetries with respect to the two axis of coordinates the number of coeffi-
cients is still 9 but the elastic problems can be solved on a quarter cell, with
ordinary boundary conditions (this avoids the difficulties due to the periodicity
conditions).

d) Three symmetries. - If the cross section of the basic cell possesses
3 symmetries, namely 2 symmetries with respect to the coordinate axis and a
symmetry with respect to a diagonal axis, then the number of coefficients
reduces to 6.

Qrr2z = Qr1as - Qs = Qo323 > Qi = Q2222

It should be noted that, if the basic cell possesses an hexagonal symmetry, then
the macroscopic constitutive law is transversely isotropic, and requires the deter-
mination of 5 coefficients. This is the case if the fibers are circular and arranged
at the vertices of a regular triangular net.

2.3.2. Numerical experiments

a) Some hints for computations :

The most manageable approach from a computational standpoint seems to be
the strain approach. 6 displacements vectors w;; solutions of (28) with e® = Tij_,
have to be determined. But, according to the decomposition of an element of
DP(Y), we have :

wy = Ty X (34)

where X;; is a vector with periodic components. Using the variation of Hill’s
lemma it can be shown that X;; is the solution of the following variational
problem :

Find a vector x;; with periodic components such that :

[ ety e@)dy = - [ ay) Tye(9) dy (35)
Y Y

for every vector § with periodic components.
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The homogenized coefficients are given by (32) with due account of the
splitting of Wi

b) Some examples :

i) We have tested the method on a case for which experimental results are
known for a statistically homogenous medium. The body under investigation is

a (monodirectionnaly reinforced) boron epoxy composite with the following
characteristics : )

Il

E; = 60.10° PSI ve =0.20
E,, = .06.10° PSI vy, = 0.35

Il

The _Fi1.rect10n of the fibers is y,. The transverse modulus E;. the Poisson
fzoeﬂlc]ent vy, arc plotted on Fig. 4. For the homogenization theory a very
idealized situation has been chosen: the fibers are assumed to have aA circular
cross section, and are arranged at the vertices of a square net. As it can be seen
the agreement with experimental data and with previous bounds theories (for
statistically homogeneous media) is quite good.

homeogenization
(28)

5 .
L] experimental

0. ratio

- 1 ) ratio
0. 5 fiber/total 0. ' .

Figure 4. — Comparison Homogenization/experimental data.

if) We have studied the effect of the shape of the heterogeneity on the
homogenized properties, when the ratio fiber-matrix is fixed. This has been
done for an elliptic shape, with constant area. It shows how easily the homo-
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Figure 5. — Effect of the shape of the fiber : elliptic cross section.

genization theory accounts for anisotropy : the computer programs are the ones
of the first example.

3. Model of damaged material

3.1. Description of the model

A material submitted to cyclic or heavy loadings is damaged : its elastic
properties are degraded during the loading process. This macroscopic evidence
reflects a microscopic process : on the microscopic scale, voids and cracks are
initiated and grow during the material history. This microscopic process has
undoubtedly been analyzed a long time ago by the pioneers of damage theory
(Kachanov & Rabotnov) but its complexity has limited its use to qualitatiye
explanations. Since the measurable quantities are essentially Macroscopic,
the studies on damage are generally oriented towards the introduction of
macroscopic variables describing the phenomenon. As long as one is concerm?,d
with unidirectional problems, the Kachanov & Rabotnov theory is quite satis-
factory. It is based on the notion of effective stress:

v=0/(1 D) (D measures the damage) (36)
which yields for the elastic moduli :

Eeff - L(l - D) (37)
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Patented authors [15] agree that the evolution of the damage parameter D is
correctly described by a Norton law :

«

This theory has been successfully generalized [6] [15] to the case of a
three dimensional isotropic damage for which only one parameter is needed.
However the real phenomenon seems to be anisotropic and the propagation of
damage takes place along preferential directions related to the stress state.
Thus the question of the definition of damage, and of the finding of the evo-
lution laws for the damage parameters naturally arises.

A few authors [6] [7] [23] [21] have tried a macroscopic approach to
this problem. It appears that the definition of D is not straight-forward. The
theories based on equivalences in strain, in stress or in energy do not compare.
Others authors have resorted to micro-mechanical considerations to derive a
macroscopic model [1] [4] [22]: we believe however that they did not use the
adequate tool for this scale change. The “good” tool is the homogenization
theory.

We suppose here that the damaged medium can be modelled as a
continuum with microdefects distributed in a quasi-periodic manner. The
situation is comparable to the one of §2, but the micro-defects are substituted
to micro-heterogeneities in the basic cell. We assume that the size of micro-
defects can vary continuously on the macroscopic scale. This implies that the
medium is quasi-periodic for the microscopic scale, since the dependence of
a quantity on the macroscopic variable is not perceived at the microscopic
level. We assume that the basic micro-defects have a known simple geometry
which can be characterized by a finite number of geometric parameters D,
Dy, ... » Dy. These parameters (or any one to one function of them) will
be called the damage parameters.

Examples (cf. Fig. 6).

The homogenization theory exposed in § 2 applies (the results are unchanged,
the arguments differ slightly). It yields the macroscopic properties of the
damaged medium as functions of the damage parameters B i v 5 e !
Let us introduce the following notations: for a macroscopic point x we
denote by :

* D(x) the array of the damage parameters D (x). ... .. D, (x)

* B(D(x)) the micro-defect (s) in the microscopic cell lying “under™ x, the
geometry of which is fixed by the data of D(x)
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Figure 6. — Microdefects. 4

5 = 3
a) Spherical microvoid : D=Ror D ——3 aR7/1Y | .
3
b) Ellipsoidal microvoid : Dy = Ry, Dy =Rg, D3 =Rz or Dy = 3 rrRi,’ 1Y

c¢) Cylindrical microvoid with an elliptic cross section : Dy = Ry, Da = Rp
d) Plane microcrack : Dy = ¢

- CP (x) the stress localization tensor defined as follows:
ij

/ A(y) Ci? = E(ug) in Y*(x) =Y - B(D(x))

divCP =0 in Y*(x)
ij
C?j n = 0 on dB (boundary of B(D(x))) (39)

D
<G >=T;
Cﬂ n opposite on opposite sides of Y

u?j € DP(Y)

N

The homogenized law is then defined by the following compliance tensor:

o 1 f D D d (40)
A?jkh YL Yy Apars Cijipg () Cinies () dy
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Its inverse tensor can also be useful. We introduce to this effect the strain
localization tensor and displacements fields w]IJ) defined in a manner similar
to that of (28) (30).

sa = a(y)e(wg) in Y¥* \
divs =0 in Y*

sgn=0 on 0B

D (41)
§i; 0 opposite on opposite sides of Y

wh € DP(Y)

w{-:j' ~ Ty y is periodic

Then the stiffness tensor is given by :

afih (D(x))=ﬁ fY  Zpqrs () epq (WD (1) e, (W, (v)) dy (42)

which generalizes (37) to the three dimensional anisotropic case.

Remark 4 : Let us point out that all the homogenized laws derived for the dama-
ged medium, either by an equivalence in energy or by an equivalence in stress

or in strain are equivalent. This particular point does not appear clearly in [7]
[22][4].

3.2. Relations between macroscopic and microscopic quantities. Effective
stresses and strains

Since the stress and strain tensors are not defined in the interior of the defect
B (D (x)), the averaging process (6) which yiclded the macroscopic quantities
from the microscopic ones must be revisited.

In the case of the stress the modification is immediate : since the stress
vector vanishes on the boundary of B (D (x)), we can continue the stress tensor
by 0 in the interior of the defect. We denote by 6(x.y) this continuation and
we obtain :

1 1
o (x)=— a(x,y)dy =— o(x.y)dy (43)
(Yl Yy L 1Y | Yy ¥
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Conversely the microscopic stress state is given, in the case of an elastic medium
by the tensor of stress localization defined in (39):

0,5 (x,y)=C2 o (44)

We postulate that the effective stress state is the microscopic one. Then (44) is a
generalization to the three dimensional case of (36). This case clearly illustrates
the meaning of the notion of stress localization.

More care is to be applied in the treatment of the strain since the micros-
copic displacement does not vanish on the boundary of B (D (x)). We will admit
that it can be continuated in a regular manner in the inside of B (D (x)). This has
been proved by F. Léné [17]. We denote by u(x, y) this continuation and we
obtain :

1 1
e S = - d 45
()lY! ey @6yay = ,Y1£Yz(””+””)s (45)

Conversely the microscopic strain is obtained from the macroscopic one
by means of the tensor of strain localization :

ers (u(x,y)) = e, (WR® (y)) ) (46)

We admit that the effective strain is the microscopic strain. It is given by (46)
in the solid part of the cell and by the above mentionned continuation, in
B(D(x)).

We remark that the variation of Hill’s lemma still holds :

Let u be an element of DP (Y ) and 1 be such that
divtr=0in Y* 7-n=0 on 8B, 7+ n opposite on opposite sides of Y,
then

I #

|
T SO e @ON >y = h e e
where
0 : L
=05 Jy WY=L <) >y
| ;
e?j:m JaY (u;n; + u;ny) ds

1 We assume here that 3B does not meet 3Y : then uand U are equal on 3Y,
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The definition of the elements of DP (Y) remains unchanged (cf. (14)) :

but the macroscopic strain Ly; is not the average on Y* of the microscopic one
indeed we have :

1 1
E,; =eg. =— j - (u1 n; +u;n;) ds (48)

3.3. Analysis of the dissipation

3.3.1. Theoretical analysis

Damage is a phenomenon which dissipates energy. We propose to study the evo-
lution of the energy with the help of thermodynamical arguments. We consider
the quasi-static evolution of the macroscopic damaged body considered above.
We assume that this evolution is isothermal and that strains are infinitesimal.
The actual state of the macroscopic body depends on the field of the damage
parameters D (x). We shall denote by uP the actual macroscopic displacement
field in the body under the applied loads. The macroscopic free energy is

W=W(e0(uD).D)=js; w (e (uP (x)), D (x)) dx (49)

where the following notations have been used

- ¢% is as usually the macroscopic strain tensor
du, ou,
eg (U)"n<ax ax ) o
j i

+ w is the macroscopic density of free energy
1
w(e®(u),D)=- afﬁih (D) e} (u) ey, (u) (51)
The two laws of thermodynamics lead to the following equality of powers :
W+®@=e (52)
where @ is the power dissipated by the irreversibilities of the evolution (in our

case they are only due to damage), and where 9, is the power of the external
forces. From (49) we derive :

W= f (—%e(uD)+—15) (53)
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oW
But— =¢" and
e

f o e(P) dx = j oD-nﬁDds—j diveP WP dx =%, (54)
2 Yan )

Hence (52) yields
A OW .
D= — j — Ddx- (55)

Let us define the thermodynamical damage forces by :
aw( )
F = ——(x
a®= 73

eff
=ﬁiggﬁhfnu»eng(m)ﬁh@D(m) (56)

I 1€1
~ ;

3.3.2. Evaluation of F in two simples cases N . ‘ -
a) Let us take the simple model of a medium containingspherical microvoids. The

damage parameters is the porosity
4
D=- nR3/IY]|
3

we obtain

eff
daffl, 1Y Qafffy

aD  47R? 3R

With the help of the derivation formula on moving domains we obtain from (35)

—= = owpD
aaieflf(h : e ( kh ) dy
d RJ B [Y | \[‘;—-B(D(x)) Apars Crs (Wu pa\ 3R
1 D
_ = f dpqrs Crs (wﬁ) €pq (wip) ds . (58)
aB(D(x))

D

b M eriodic function
From the definition (41) of wy,, it follows that R is a peri .
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Hence the variation of the Hill’s lemma proves that the first term in (58) va-
nishes ; we are let with

£f
aaiejkh _ 1

oD 47R?

‘jﬁB(D(x)) pars Crs (wli)i) pq (wI]'Zh) ds. (59)
Since 18B(D(x)) = 47R? (area of a sphere) (56) yields

1
E - S IARMD( W 4 5 TS wn) € (WD ) ds
a®) { 2{0B(D(x))! j;B(D(x)) pars Crs (Wij) epq (Wiy

ef(uyep, Py . (60)
Recalling the following property of the tensor of strain concentration
- D 0, D
e (u(x,¥)) = er (WH()) 8 (uP (x)),

(where u(x,y) is the microscopic displacement in the damaged body) we obtain

1

a0 B(D(xy) 5 2pars €rs (WX.¥)) epq (ulx.y)) ds

10 B(D(x)) \fa
(61)

The relation (61) enables us to identify the damage force associated to spherical
microvoids : it is the surface average of the microscopic elastic energy on the
boundary of the void A dimensional analysis shows that the damage force has
the dimension of a pressure. This result demonstrates that the force which
contributes to the propagation of the microdefect (hence of the damage)
depends only on the elastic energy on the boundary of the defect. This result
is satisfactory when it is compared with the one given by the usual theory of
damage. If we assume that

£
aiejkfh =(1-D) ik (62)

we obtain a modified damage force

- aw 1
By = = —=—a, e w2yl . (63)
d aD 3 ijkh “kh ij
We see that in this theory the force that contributes to the propagation of
damage is the elastic energy of the undamaged material in the actual state of
strain e (uP). We believe that the result given by the homogenization theory is
physically more sound.
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b) We consider now a medium containing ellipsoidal voids. Our dalmagc para-
meters are taken to be D; = R;/Y ;. D, = R,/Y,, D3 = Ry/Y; whichare non-
dimensional quantities. Then

& eff
i _ o, O%fin (64)
aD; 'R

In these conditions, it can easily be shown that

-

'eff ] % y —
B, b f Spars Srs (W) epq (WR) o= W s (65)
R [Yl ¥ 3B(D(x)) i

where 11 denotes the outer vector to the body on 3B(D(x)).
In this model, 3 damage forces corresponding to the three damage para-

meters are obtained. These three forces govern the propagation (-:)f the voids in
the three principal directions, which implies that the propagation of damage

is anisotropic.

3.4. Laws of propagation

As it has been previously seen the dissipation due to damage is

D = ]ﬂ Fa(x) D(x) dx = 2, fﬂ F, (%) Dy(x) dx (66)

i=1

This dissipation must be positive. A sufficient condition (which is not necessary)
is that the propagation of damage be governed by the normality rule :

Normality rule: We assume that there exists a convex function ¢ of Fy= (Fdl ,
Fdn) such that

) ¢ . o
D(x) =‘5;;(Fd(x)) ie. D(x)= g}i:(Fd(x)) (67)

We shall consider some examples.
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a) Brittle damage
We define in the space of the F, forces a closed convex set Py, and we set

b (F, 0if F; €Py
) = 68)
d + ©o otherwise (

The meaning of (67) (68) is the following : if the forces Fy lie inside the damage
set Py there is no propagation of damage, whereas if the forces Fy lie on the
boundary of P, there is propagation of damage along a “direction’ (in the space
of damage parameters) given by the normality law. Forces F; outside P, have
10 physical meaning.

We can rewrite (68) in the following manner. Let &, be potential func-
tions defining P,

FEPj= & (F)<0i=1,. .. ... n

then (67) (68) is equivalent to

- !G‘j-"i
D=X-—(F
,‘ YaF, a)
(69)
R ET
A0, N=0if 5 (F,)<0 or Fd;F—'< 0.
d
In the monodimensional case the law (69) reduces to the law of total damage
introduced in [5] through a completely different approach,

b) Law with a time effect [

We set
1 5 .
‘f’(F):ZIF—HPGFI, (70)
(67) yields
0if F, €P,
D= (71)
1

L“(Fd - de Fy) otherwise.

This law is analogous to the Perzyna’s law of viscoplasticity. u appears as a visco-

sity parameter. The velocity of the loading and the time scale, are both taken
into account.
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¢) Law with a time cffect 11

The well known Norton’s law can also be used
A ey H
Fy=——0@GE)"""
#(F) n+1
where j is the gauge function of the convex set P, defined by

j(F) = inf {kIFEkPy}.

(67) yields
. Dj o
=x—(Fp) G(FD)".
D aF( a) (kg

i ic ic background
In order to propose other laws a stronger physical and microscopic g

than the author can account for, is required.

Remark 4. The normality rule (67) bas always .tffzen l:; 11113;1‘ 2£Cdls(_;l§il\(:;;,;:
has proved its efficiency in other situations Piastu,.tty,t UE dei)en(ie.ncc e
in our case its adequacy is debatable becausle of its s robg ol
“hoi f the damage parameters : the evolution law can en o el
;};Opl)iaileters and not for another one. The reader is referred to [2] [

discussion of similar situations.

3.5 Numerical results

In our model of damage, the numerical studies are thre;:ffold : - N
ici i n order
a) A parametrized study of the coefficients afjkh is undertaken i

eff (D). This study requires the homogenization

to obtain the law D = agjyy : ‘ plaation
technique, and the resolution of 6 elastic problems on the basic cell
C Ll

value of the parameters D. This is the cumbersome part of the model. |
b) The computation of the forces of damage : this step is easily performed.

¢) A macroscopic study : after the loadings. are prescrll;ed“?;ci:;:i(!lﬁlhoi
i id is chosen, an incremental procedure is performe. : L
@CTOVO f the damage (0 for example), apply a small increment o Joad i
o, Vta;ul: Ob) the damage forces, reinitialize the damage parameters w1tht;::-
lcfwm?g‘"/) r:compute the stiffness matrix with Fhe hte]iz ?ijg;;hiesn;pilsy ;_I:;e =
i ; loads, etc... At the present time /
:lr:(;;i]:;r[];??t;nd only partial results on parts a) and b) are available.
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Part a : parametrized study ofaﬁ-fkfh

i) We first take a model with a cvlindrical void of a circular cross section
(cf. Fig. 6¢). The transverse directions are 1 and 2. The damage parameter is the
two dimensional porosity

D = 7 R?/|Y|

We have drawn on Fig. 7 the relevant parameters B and » ,, the transverse
Young modulus and the transverse Poisson coefficient. It is worth noting that,
for this model, the damage propagates isotropically since only one parameter
is considered. It is also worth noting that the transverse Poisson coefticient is
not constant. Hence the damage cannot be described by the model (37) of
isotropic damage for which V1zis constant and cqual to its initial value. Finally
it should be noticed that significant changes in the value of the Young's modulus
only occurs for large values of the porosity. The author. who is not an experi-
mentalist, is in no position to offer a satisfying explanation to this fact although
these values of the porosity seem to be larger than what is actually observed.

This is why we have also performed computations on the case of a microcracked
body.

i) The defect under consideration is now a plane crack, and the damage
parameter is £/Y, where ¢ is the length of the crack. According to [24] the
homogenized body has a different stiffness in traction and in compression along
the direction ¥,- The Young modulus in traction E, and the Poisson coefficient

V12 have been plotted on Fig. 8. Note that the laws E,(D) and vi5 (D) seem to
be very similar.

\ Eeff/E reft /.

0.5 i g

o 0.5 1 0. 1‘

Figure 7. — Cylindrical microvoid.
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FPart b damage forces

eff 1 '.ef

Foss

sE /1 On Fig. 9 we have plotted the damage forces inside a diabolo which has been
loaded by imposed displacements at its edges. The computation was performed

in plane strain. The Fig. 9a) has been obtained with the model 1) of the cylin-

drical holes of circular cross section with one parameter. The Fig. 9 b) has been
obtained with the same model but with two

parameters, i.e. when considering
a circle as an ellipse.

0.5
05

The direction of the forces gives the direction of propagation of d
ie. the direction where coalescence of the holes is the most likely to

Comparison of both models shows the superiority of the second one. in
anisotropy is present.

amage.
occur.
which

L " g o 0.5 1.

i - ateriall
Figure 8. — Plane crack., 4. Homogenization for dissipative materials

A 4.1. Viscoplastic composites
—-—] : = We now return to the study of composites and we assume that cach constituent
¥ —e— has a constitutive law constructed after a standard model : the microscopic strain
Pawawo o }l 7777777 (- can be split into two parts, the clastic part and the inclastic one. The rate of the
“ anelastic part is given as the derivative of 2 potential with respect to the stress
| tensor :
A* slu) = g + ean (72)
——] Mesh '

aan
s

dg
; (X,y):——-(y,o'(x,y)) :

(73)
aoij
‘ E,R

This constitutive law adequately describes a few known cases -

a) Maxwell viscoelasticity

1F forces eter
Damage torce one damaye paramete
a. S

1
d(y. o) = 5 Bijkh(Y) Gij Oyn, (74)

@ e(l) = Aé¢ + Bg _ (75)
Ry

b) Perzyna viscoplasticity

N for two damage parameters ¢ (Y10) lo_ IIP( )ﬂ-J 4 (7()
b. Damage ces 2

Figure 9. — Damage forces :
a) One parameter, b) two parameters of damage.
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where P(y) denotes the elasticity domain at the point y and Hp{y) the projection
onto P(y); then

" . 1
e(u) = Ac +H(cr~ My 0) - (77)

¢) Perfect Plasticity

0if ¢ €P(y)
78
(y.o) = (78)

+ oo otherwise
(73) yields

(etn 1 — o)< 0 Yt €P(Y)
a(y) € P(y) .

(79)

In this first section we shall restrict our attention to regular potentials of dissi-
pation, the derivative of which possesses a Lipschitz property -

%(y,c) —--ai(y,t)\é(‘,icr -1l V1.0 (80)
do oo

This includes the cases a) and b) but excludes c) which will be treated apart.

We construct the homogenized law using the stress approach. An history
of macroscopic state of stress 6 % (t) being given, the microscopic state of stress
o(y, t) and the microscopic displacement field u (y ,t) are solutions of

0 , .
A(y)e(y.t) +a—¢(y\a(y.t))=e(u(y.t)) inyY
ag

dive(y,t)=0in Y

& n opposite on opposite sides of Y

u € DP(Y)

6(0) = g, (for the sake of simplicity we shall take g = 0 in the sequel)

Under the Lipschitz condition (80) on ¢, the problem (81) aFllnits a solu-
tion. In order to obtain the homogenized law we do not immediatly average

(81)
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on Y, but we multiply (81) by the elastic stress concentration tensor C_; and
then average on Y. In terms of the components we obtain :

: 0 & .
<Ajikn Crslij O kn = F < Crqy T (0) > = <gj5(u) > - (82)
aaij
We note that
Agikh Crslij = €xn (Ups) (83)

by using the variation of Hill's lemma we get

< Ajjkn Coslij Okn = = < ekp (Upg) 0y > = ey, (urg) > <oy, >

= Aﬁfifrs 61?11 ) {84)
In the same way
e () Crgy > = <oy (W) > <Cpyy > =60, (83)
Hence (82) becomes
. 0¢ .
Alihffrs Ggh +< Crsiij (ﬂ) = e?s * (8(’)

1

The problem lies in the determination of the term

a¢

rslij (5 > Q7
slij 3oy ) (87)

<C

which we wish to express as a function of ¢®. This is impossible to achieve in a
direct manner. We split ¢ into two parts : the one which would occur if the
material was completely elastic, and a residual stress tensor :

o(y)=C(y)a® +o"(y) (88)

03 (¥ s ) = Cjjips (¥) ol (0 + oj; (v . 1)
of satisfies
dive’= 0,<c">=0,6"- n opposite on opposite sides of Y.Then (87) becomes

< Cri Yo (v.C(y)e® +a"(y) > - (89)
ij



104 P.M. Suquet

We sct
®(00 ,67) =<¢(y.C(y)a® +a'(y))> . (90)
then
ad do #
(a? ey =< Crslij (Y)_()’ C(y)o? +e"(v)) >,
a0l 005
and (86) yields
.. od ,
A?S(_h Opn ) (6 6") = e?s' (91)
TS

This is the homogenized constitutive law. But we see that the macroscopic
data of ¢° is not sufficient to entirely define the the strain tensor e, since we
need to know the residual stresses in the cell located “under x”. The tensor of
residual stresses o” satisfies another set of equations, namely

\

3
A(y)ér+a—¢(y,c(y)6°+c’)=e(vf)inY )
g

N

dive'=0inY.<e'™>=0 (92)

viEDP(Y),e" « nopposite on opposite sides of Y.

The complete homogenized law is the set of equations (91) (92). These
are coupled by the presence of ¢® and o” in both equations. We can rewrite them
in a more esthetically pleasing form :

ad
Aeff a9 +F(GO ,u,r) =e0in O
a

., 0P "
Ac" + ‘a—; (6" .6")=e(v)inY (93)

dive"=0inY . <e'>=0
v €DP(Y), 6" - n opposite sides of Y. + initial conditions

The homogenized law does not reduce to a single equation on £ alone. It is
coupled with another equation on Y. The knowledge of the macroscopic law
requires as data the microscopic state variables. It js possible to completely eli-
minate the microscopic level (i.e. ¢ and v"). We obtain a functional law where
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the whole material history must be taken into account : e"(t) depends on
o¥(s) 0 < s <t (see [24] and [27] for full details in viscoclasticity). But kee-
ping the microscopic level allows for a better insight into the structure of the
law (93). If we introduce internal variables, we obtain a “generalized standard
law™ in the sense of [10]. We shall recall the meaning of this term later on in
this text. This kind of constitutive law implies some properties of convexity
which are usefull to study the stability or the behavior at large time of such
materials.

4.2. Review of the notion of generalized standard materials { GSM)

For such materials the state of the body can be described by the strain tensor
e and by other state variables B (we limit ourselves to isothermal transforma-
tions). A generalized standard material (G.S.M.) is defined by a density of [ree
energy W (e ,p) and a density of dissipation @ (B). Both are convex functionals
of their arguments ; they satisfy

?

aW 50)
c6=—1 (e,p) B=—(P) (94)
de op

where we denote by B the thermodynamical force associated 16 B whose defini-
tion is
oW . i)
B = —— (B, . (‘}5}
TR
(94) (95) can be rewritten using the Legendre [Fenchel transforms W. and
Dof Wand (D, as

W* aw*_ . * od ’
(¢,B),p= - (6.B), F=—-(B) (96)
0a 0B 0B

G.SMIL — An important subclass of the G.S.M. class is the “G.S.M.II" class
defined as follows : for such materials the internal variables contain the ane-
lastic strain

B=(e*" , @), aare other internal state variables

and the free energy W (e ,B) can be expressed in terms of e®! (elastic part of the
strain), e®" and @ as :

W(e,B)=W(e', e a)-
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We shall say that the material is a G.S.M.II if its free energy can be split
as follows :

w(eel et q) = wel (eel) + W2 (a) (97)

where W¢! and W depend only on e®! and @ respectively. Alternatively a mate-
rial is a G.S.M.IT if W. can be split into

aW
W. (a,B) = W' (¢) + WS (A) where A = — 3 . (98)
a
The normality law (94) for a G.S.M.II becomes
. od . oD
M =—(g,A) a=— (g,A) (99)
da JA

since it can be proved from (97) that the thermodynamical force associated to
e®" through (95) ise.

Example

The material defined by (72) (73) is a G.S.M. and a G.S.M.II material.
Let us set :

GSM. B=e" W(e,B)=-a(e -B)e-B),d=¢

o | —

1
G.SMIl  noa,Ws(e) =g 9 efledd! We=0 d=4¢ .
The G.S.M.II material is a generalization of (72) (73) in the following
sense : we set
L =(o,A),E=(e,0),E" =(e", —a), E? = (e ,a) .

Then E = E® + E®" and (58) is equivalent to :

el Ean 267(13 0
Eel( ) 5 (£) (100)

which generalizes (72) (73).
Let us show that the material defined by (93) is a G.S.M.II material.
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Set :
A(x,y)=e"(x,y)' (101)
el /0 1 eff (102)
W* (ﬂ' ):5 qrs mqu Z
W@ )= [y Ao ot () dy (103)

Since o' must satisfy
dive"=0,<e">=10 ¢"+ nantiperiodic
we can show that

W,
do’

't dg _
(s") =ft—(y\C(y)o° + o' (y)) dy (104)
0 Jdg

which shows that the internal variables associated to the residual stresses are

the microscopic anelastic strains. It is then easy to show that, with ® given by

(90), the normality law (99) is equivalent to (93).

Remark 5. — Let us point out a few well known facts on polycristals [20].
a) The macroscopic free energy is the average of the microscopic elastic

energy (in fact of the microscopic free energy).

1
W. (6.6 =—F A(W(C(y)e® + 6" (y)N(C(y)e® + 6" (v)) dy
211~y

= : PR
21Y] vy

7IYI ¥

A(y)u (y)o"(y)dy (105)

However it does not reduce to the macroscopic elastic energy. According to
(105) we observe that in addition to the macroscopic elastic energy (first term
of the right-hand side of (105) it contains the elastic energy stored at the micros-
copic level because of residual stresses (due to anelasticity).

b) The macroscopic elastic and anelastic strains are not the averages of
the corresponding microscopic quantities. Indeed we have

() =<Cy) e (y)> ()™ =<Cy) e (y)> (106)

1 No confusion is possible between the force A and the elastic compliance A (y).
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¢) We notice that an infinite number of internal variables is needed to
define the homogenized law : at each macroscopic point x we must know the
microscopic anelastic strain at every point y belonging to the cell located “under
x7. A theory with an infinite number of internal variables is rather useless in
practice. However it does reflect the complexity of “nature”. Trying to restrict
the number of internal variables generally leads to approximate theories.

d) The property of G.S.M. demonstrates that in the appropriate space
(of generalized stresses and strains) the normality rule holds. It proves that
normality Is stable to scale changes, provided that a high enough number of
internal variables is introduced.

e) The macroscopic anisotropy has two origins (refer to (91)). The first
one is the shape of the heterogeneities as in the elastic case. The second one is
the anisotropy of the residual stresses which enter the dissipative term in (91).

4.3. Another example of homogenization of dissipative materials
We consider an elastic cell which contains a crack, the lips of which are not

perfectly lubricated. We can construct a model of microscopic law of contact,
similar to the one described by (72)(73):

c=ae(u) in Y -~ C (C denotes the crack), (107)
dive =0inY - C , (108)
[ul=u* —u~, [u]=[ule + [u]a ¢f Fig. 10), (109)
W, ) .
[ulel = T (6. n) (n oriented from — to +) (110)
agm =22 (. n) 1
u =—— (6. n 1
P (111)

where w. and ¢, which are convex functions of the stress vector T =¢.n,
are the elastic energy and the dissipation function of the crack.

Figure 10. — Dissipative crack.
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T can be split into its normal and tangential parts :

=GN . =g.n—1 n.
Tn G.MN.n " n In

Using the Legendre transform w of w,, (110) can be written :

ow
6.n=—([u]®, (112)
ov
jod:
ow ; ow a
T =— ([u]) . T,=— ([u]¥) .
T av, Ve

This model describes several situations that have been studied in the litterature.
Let us mention :

a) Non dissipative crack
0ifv, 20
i) wiy) =

+ oo otherwise.

This is the frictionless crack with unilateral condition on its lips. studied by
Sanchez in [24].

kiv?  ifv,=0

b —

i) w(v) =

+ = otherwise.

This is a model of elastic composites with nonperfectly bonded constituents
studied in [23].

b) Dissipative crack
i = T) = = IT 2
i) we =0, ¢’()—2# J5

This is a crack with a linearly viscous friction law for which studies are under
way [16].
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0ifv, 2 0 0if IT | < k
i) w(v) = pI)=

+ oo otherwise + o0 ptherwise .

This is a model of crack with unilateral contact on its lips, and a Tresca’s law
of friction.

0if v, >0 0 if IT,l < kIT,!
iii) w(v) = ¢(T) =

+ o= otherwise + oo otherwise

This is a model of crack with unilateral contact and a modified standard
Coulomb law of friction. It was established in [25] (the Coulomb law itself is
not standard).

We shall present a formal way of deriving the homogenized constitutive
law of such materials in the framework of G.S.M.. The internal variables are
the anelastic part of the jump on the lips of the crack :

B - [u}an‘
We first construct the free energy W(eo,ji) using the following rule : with e
and B given, we look for the microscopic state u related to these data and we
average the corresponding microscopic free energy :

1
o gy = Inf L[ ae@t)e@)dy +
w(e®.p) u*E€ DP(Y) 2lY| v¥Y-C
u* — e0y periodic

i
b e fc w([u"]— B) ds,

and we denote by u the minimizer of (113). We now identify the forces asso-

ciated to e® and P! :

du v dw d[u]
Joe vee (G5) o+ [ 5o am-w35 s I
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It can easily be shown that the macroscopic strain e® and the microscopic displa-
cement u are related by :

1 1
0 _ :
§ = _[;Y = (g + w5y ds (114)

The variation of Hill’s lemma yields

1
1Yl

f;,c t(y)e(u(y)) dy + j(; t.nfu]ds i (115)

with
1
Yl

w=— [ L tO)dy

Differentiating (67) with respect to €9 and o we obtain :

1 » ou . d [u]
‘/Y—ct(Y)e(gg) dy + ']c F ge0 dsg 1L

0 =

Y]

0 :%’LMC r(y)e(g%. ﬂ*) dy+j; t..n-aa[—l;llu* ds;

(117)
These relations allow us to identify the above derivatives
ow . f ow 6 4 1 "
— =00 — . § = — .
oy c 38 i Je a(y)-np ds (118)

g , 0. "
The force associated with e is the macroscopic stress 6, while the force asso-

ciated with B is the stress vector on the lips of the crack. The convexity of W
follows from the convexity of w.

The potential ® is

1
Q(B)—Tﬁf; 6 o) s .

The two functions W (e, p) and ® (B) define the homogenized material which
isa G.S.M. according to § 4.2.
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Reduction of the number of internal variables. — The nu1.nber of internal
variables may become finite. It is the case whenever it is possible to show that
the microscopic anelastic strain of § 4.1 is everywhere cgnstant (analogue }c:f
Taylor’s model for polycristals) or piecewise constant. It is also the' cas in the
model of § 4.3 if the anelastic jumps on the crack are constant, or if the s.tress
vector induced by these jumps is constant. It has been_proved by Leguillon-
Sanchez [14] that such a situation occurs when a straight ér-ack, parallel to
one axis of coordinate of the cell is considered. Their specific problem was
slightly different but their arguments apply as such in our context. Let us pom.t
out that, since they start from a Coulomb’s law of friction for the crack, their

homogenized law is not a G.S.M.

Remark 6. — The jump of u on the lips of the crack produces an anelastic
macroscopic strain :

1 1
o = — —([u;] n; + [u;]n;) ds
Cote mfc S (Ll g + [T ny)
the elastic strain is
@ = — [ eyl dy
Yooy Yy-c

o 1 :
and the total strain e9 given by (114) is the sum of (e?)® and (e?)*".

4.4. Elastic perfectly plastic composites

We now reexamine the situation of § 4.1 in the context of elastic perfectly plas-
tic constituents. For each of them an elasticity convex P (y) is given. It can be
proved [27] that the homogenized law is still a G.S.M.IT defined as f-OHOWS. In
the space of generalized stresses £ = (6°,6 (y)) we define an elasticity convex
set by :

%={Z2=(c%06"(y)).C(y)e? + o' (y) EP(y) Yy EY}

we also introduce an infinite number of internal variables a (x ,y) which are the
anelastic microscopic strains. The homogenized law is

oW,
E¥ = ((¢°), —a) ,E® = - (Z), W, is given by (105)

L belongs to ¢ (119)

Ean = ((€9)2" @) is an outer normal vector to Rat E .
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The law (119) is a G.S.M.II. In the space of generalized stresses and strains
the Hill’s principle of maximal work is satisfied. This law requires, as for visco-
plasticity, an infinite number of internal variables. It is a law of kinematical har-
dening (hardening by the residual stresses). Nevertheless, the limit convex set of
stresses, whose knowledge is required if limit analysis computations are to be
performed, can be easily derived. It is defined as the set of macroscopic stress

states ¢ ° for which a plastically admissible microscopic stress state can be
found =

P® = {6° such that there exists o (y) satisfying (120)}
<o (y)>=q

120
dive=0inY, o+ nopposite on opposite sides of Y (120)

s(y)EP(y),vyeY

P% can be determined through a limit analysis procedure on the basic cell - ¢©
constitutes the loading. It depends on 6 independent parameters. This limit
analysis problem can be solved by standard methods. The boundary conditions
are of periodic type, which is always the case in homogenization. There exists a
dual approach, the details of which can be found in [27]. No numerical tests
have been performed on this method with the exception of [19] which bears
some resemblance with (120).

5. Damage and plasticity

Damage and Plasticity are certainly two phenomena which occur together during
the loading history of the body. In the preceeding sections we have assumed that
they take place at different times : plasticity (often hardening) dominates in the
earlier stage, while damage preceedes rupture. However a reasonable theory must
account for the combination of both. Even in a purely macroscopic setting,

difficulties arise. The first one stems from the necessity of defining precisely the
notions of damage and plastic variables,

) Lo La

a. Plastic b. Elastic damaged <. Plastic damaged

or initial stresses with

Figure 11. — Plasticity and damage.

elastic damage
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The classical framework of Plasticity (or G.S.M.) is too broad : if the
macroscopic free energy is an arbitrary function W (e® .p), B can be cither a
damage variable or a plastic variable :

1
damage Wi(e?.p)= 5 a(p)e? e

Plasticity W (e®.p)=— a(e® —p)(e® —p)

LD | =

so that it is impossible to distinguish between the two effects within the G.S.M.
class. The correct framework is the damaged G.5.M.Il where

W (D, (%), By =W (D, (%)) + WE(D,B)

The internal variables which enter the first term W are by definition the da-
mage variables.

wel (D, (e9)%!) can be derived from the model of §3 by means of homogeniza-
tion techniques. WP (D ,B) can be determined either by purely macroscopic
considerations of the kind exposed in §4. or by homogenization. For a purely
macroscopic and thermodynamical study of this coupling we refer to [2].
Let us now briefly investigate the model constructed by homogenization. We
start with a combination of the situations of §3 and §4. The freec energy is

1
0yel e el el
W(D,(e”)% . p) TR ProBm aef (y)ep (y) dy (121)

where e% {y) denotes the microscopic elastic strain. Then

By < (P e = 1) 2By ay (122)
4= "3p (P, B) =~ yopy 20057 dy (

]
21Y|

[ aamanas
a) 07 P Gp

but it can be shown that it reduces to
F = —— j aeld (v)edl( )a—’?ﬁ*ds (123)
d S0y YoBM) D p Y 3D
3y
The damage force is a “certain’ average (depending on En) of the

microscopic elastic energy on the boundary of the microvoids B (D). It is lower
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than in the elastic case and it vanishes if the medium is rigid plastic. Let us
notice that the effective stress which we have earlier defined as the microscopic
stress has not an expression as simple as (44) :

o(y)=CP(y)e® +a'(y) (124)

Thus, for plastic damaged materials the notion of effective stress seems to be
difficult to use.

We also notice that, in the case of a material which possesses a micros-
copic yielding criterion, the theory of §4 gives a macroscopic yielding crite-
rion which depends on D. The rupture of an element can thus have two diffe-
rent causes :

a) rupture by coalescence of the voids

b) rupture by plastic failure if the limit load of the cell is reached for a
value of the damage under a prescribed loading.

The coupling of plasticity and damage predicts the rupture of an element for a
lower value of the damage parameters.

6. Conclusions

We believe that the homogenization theory is an appropriate tool for deriving
macroscopic models from microscopic ones. Anisotropy is taken into account
by the theory in a natural way. As it can be seen in this paper the elastic models
are now well understood, and they can give a new insight into the theory of
damage. The models of plasticity are more delicate to work with : we have
shown that properties of normality are preserved in a change of scales provided
that we introduce a sufficient number of internal variables. This result is com-
pleted by simple models where the number of variables is finite.

The extension to random media, of these results obtained for periodic or
quasi-periodic media, is not straightforward. However the mechanisms of the
macroscopic laws are the same. Homogenization allows for a better understan-
ding of these mechanisms, while it avoids the use of an overbearing formalism.
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