Proc. Contact Mechanics Int. Symp., Edt. A. Cumier, PPUR, 175-192, 1992

MIGHT BOUNDARY HOMOGENIZATION HELP
TO UNDERSTAND FRICTION?

G. Bouchitte®), A. Lidouh®*)**), J.C. Michel™**), P. Suquet**)
() U.T.V. Avenue de ’'Université. BP 132. 83957. La Garde. Cedex. France.

(=} LM.A./ C.N.R.S. 31 Chemin Joseph Aiguier 13402. Marseille. Cedex
09. France.

1. PRESENTATION OF THE RESULTS

The importance of the role played by the morphology of contacting
surfaces in the frictional behaviour of deformable bodies has long been
recognized (Green and Williamson (1], Tabor [2]). The roughness and the
material properties of the body located in the vicinity of the contact surface
are small scale characteristics which can tremendously influence the large
scale behavior. The aim of the present study is to establish a contact law di-
rectly involving the surface state. Several models based upon a mechanical
analysis of the deformation of asperities have been proposed in the litera-
ture. Some relevant, but non exhaustive, studies addressing this problem are
(1] [2] 3] [4] and their references. A mathematical analysis of this problem
based on boundary homogenization was presented by Sanchez and Suquet
[5] in a setting restricted to the linear behaviour of contacting materials.
The results were derived by means of formal asymptotic expansions, under
the assumption that the material was linearly elastic. They are extended
‘here to more general types of behaviour ranging from linear elasticity to
deformation plasticity, defined in terms of a convex deformation energy j
and their derivation is based on the rigorous use of I'-convergence (conver-
gence of functionals). The main aim of the present study is to present this
improved mathematical tool for boundary homogenization in a deliberately
simplified mechanical framework. Large strains and large displacements at
small scale are therefore disregarded and no attention is paid here to the



176 Bouchitte G., Lidouh A., Michel J.C. & Suquet P.

possible presence of a third body.

Fig. 1: Bodies in contact and unit cell
(For clarity the two surfaces in contact have been drawn separately. They
are materially different although geometrically coincident)

A deformable body € is in contact with a rigid substrate along an
undulated boundary ¥¢ (the notations will be detailed in section 2). The
amplitude and the period of the asperities are proportional to a small pa-
rameter ¢ . The contact on ¢ is controlled by the frictionless Signorini
conditions. The behaviour of the deformable body is governed by a strain
energy j and the variational formulation of the equilibrium problem con-
cerning this deformable body under body forces f reads

(P°) Inf{[r j(e(u.))d:x:—lze foudr, v, <O0on~*, u=0o0n aen}.

The limit problem, when € tends to 0, is investigated. To reach a result
which is as explicit as possible, the asperities are assumed to be periedically
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distributed. It can be proved ([6]) that (P€) converges in the sense of I'-
convergence {Attouch [7]) to:

(Pho™) Inf {L+ jle(u))dz — .[14. f.ud:r+./2;° p(u)ds,u=0on 3.39} ,

where the new term ¢ on X° expresses the homogenized contact law on the
*flattened” or homogenized boundary Z°:

7.n® € —Bp(u) on T, or equivalently u € dp*(—o.n0).
The boundary energy ¢ will be specified in section 2.
2. CONVERGENCE RESULT

2.1 Notations and assumptions:

The following notations will be used (Figure 1) :

o Qisadomainin RY (N =2 or 3) with a C* boundary. It is composed
of the deformable body € and of the rigid substrate sharing a common
undulating boundary ¢ with equation

14

T
TN = —eh (:) ,E’ = (I],...,.’L‘N_l) .

his a C! function.

e 5 is the subdomain of {2 occupied by the deformable body and (2
is the subdomain occupied by the rigid substrate

Q= {meﬂ,xN>——eh({_—)},

e U, ={reRay>0}, Q. =0-0y, E={zeQay =0}.
¢ (2 is the unit cell obtained from the real micro-unit cell by a suitable

re-scaling with amplitude —i—

Q= {ye R, yn > —h{y), v €)0,1[V 1},

' ={y€dQyn=-h{y)},7" ={y € Q,yn =0}.
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o ~y#denotes the vertical boundaries of Q on which the periodicity
conditions will hold. A periodic (or anti-periodic) function is denoted f #
((:;' f -# ) when it has equal (or opposite) values on the opposite sides of
7.

The constitutive law of the body occupying QY is given by a strain
energy j. j can also be interpreted as a dissipation potential when u is
interpreted as a velocity field instead of a displacement field. Throughout
the study j is a convex and continuous function on ]Rf XN Several cases of
interest, ranging from linear elasticity to Hencky Plasticity and including
Norton-Hoff materials, can be covered by assuming that j takes the form

j(e) = k(Tr(e))* + j°(eP), (1)
with jD(eD) — I% (1EDIPH) , (2)
and 0<k<+4oo, 0<A<+0 (3)

where e is the deviatoric part of e. The case p = 1 corresponds to linear
elasticity, while the case p = 0 corresponds to Hencky Plasticity with Von
Mises criterion.

The body is subjected to body forces f € LN¥(Q)" and is clamped on
its outer boundary 9.} (cf Figure 1):

o €dj(e(us)), dive*+f=0 in Qf, u*=0 on O

e(u) is the linearized strain tensor associated with the displacement field
u. The body is assumed to undergo only infinitesimal transformations. The
contact between {25 and the rigid substrate is governed by the frictionless
Signorini conditions on *:

u; S 0: a'rfl S 01 u;af’a - 0? o-te =0 on 761
€ __ € € £ __ £ €€ € — £ € €€
where u;, = u.n¢, o, = ofmini, (07); = ofjn; — oqn;,

n® outer normal vector to 7°.

The variational formulation of the equilibrium problem is (P*).
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2.2 I'-Convergence
Define on L*(Q2)” the functional:

/ J(e(u))dr, when v € HI(QS_)N, w=0 in ¢,
5

Fé(u) = U <0 onv* u=0 on 4.0,
= 400, otherwise.

Due to the possible linear growth of j, the appropriate functional space for
studying this functional is BD{(2) ([8], [9]) and the strain fields to be taken
into consideration can possibly be measures. Define

Fe = [ etz + / ) /

I (e @sn)ds
Q

where j°(2) = lim ;

t — 400
e*(u)dx and e®(u) denote the absolutely continuous part and the singular
part of the measure e(u) with respect to the Lebesgue measure {[9], [10]).
4 is the recession function associated with j. The functional F' involves a
relaxation of the boundary condition on &.{). In addition, define, when z is
in RY _ -
oo ~vy ¥
¢(z) = Inf { [g j*(e(m)dy, ve(D(Q))",
# 1
v# on 1*, vy{y)+2. <0 on 7'} (4)

Theorem: Under the above assumptions, F¢ T'-converges into L'(Q)¥
strong to Fhom .

Flu +/ ut)ds when v € BD(R?), u=0 on Q_,
F,m(u)z{ )+ [, #(u") (@)
= 400 otherwise.

ut is the trace of u on X% into 2 .

Corollary: Assume that f € LN ()N, Then (P¢) converges to (P"™) .
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The properties of ¢ are detailed in the following proposition.

Proposition: ¢ is a convex function which is lower-semi-continuous and
positively homogeneous to the degree one on RY. It is the support function
of the convex set K

K:{TelR”,a oceKk, T=—/ a.nﬂds}
.).0

where K ={o € L(Q))*", o € domj®, div(e) =0,

on —# on 7¥, ¢,<0 and ;=0 on 7'}

3. RESULTS AND DISCUSSIONS

3.1 Preliminary comments

1.The contact law between the deformable body and the rigid substrate
is governed by the relations:

on’ € —dp(u) on I, or equivalently u € 8Ix(—o.n%),
where n® is the outer normal vector to X° The traction o.n® on X is
constrained to stay in a convex set — K, in agreement with classical friction
laws, e.g. Tresca’s or Coulomb’s laws. However the displacement is an outer
normal vector to the set of admissible tractions. This associated "flow rule”
is in agreement with Tresca's law but not with Coulomb’s law, which is
nonassociated.

2. When p > 0, it can readily be checked that j, = I{g}. Therefore
¢(2) =Ir, where I'={zeR", zn(y) <0 Wyey'}.
K is I"s polar cone:
K=T"={TeR", T2<0 VzeT}.

I' and T* are directly correlated with the shape of the asperities and the
determination of the contact law is reduced to a purely geometrical problem.
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In the simple case considered in Figure 2, the cones I' and I'™ can be given
in an explicit form:

T'={zeRY, |z]|< —cotg(d)z,}, ["={TeR", |T}| <tg(8)T.}
and the contact law reads

o] < ~te(B)on, u = —Aﬁ, Uy = —Atg(6),

A>20, A=0 when |oy] < —tg(f)on.

{(ug,un) and {o04,0,) denote the tangential and normal components of u
and o.n on £° (u, = un® = —uy, 0, = o.n%n"). The homogenized

contact law specifies that except when p = 0, a dilatancy effect is to be
observed: a non vanishing tangential displacement is accompanied by a
nonvanishing negative normal displacement of the contacting surface. This
normal displacement should not be interpreted as a loss of contact but as
the motion of asperities in the deformable body moving cver asperities in
the rigid substrate.

Fig. 2: T" and I'*, cones of admissible displacements and tractions
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3. When p = 0, the set K ceases to be a cone but the contact law
remajns an associated law. A few simple estimates of K can be derived
from the definition of . When j takes the form (1):

¢(2) = 400 when zn® >0

In other terms, the possibility of interpenetration occuring between the
deformable body and the rigid substrate is excluded. This physically sound
result follows from the incompressibility constraint, which implies that

§j*° =400 when div(u) #0.

Further upper bounds on ¢ can be obtained with specific choices of v. When
z € T the following discontinuous displacement fields can be considered

v(y) = —z when yy <h(y'), v(y)=—2" when yn > h(y").
The corresponding estimate on ¢ reads:

o(z) <Inf (i (n"®. (' —2)), 7' € r}.

3.2 Numerical determination of K

When p # 0 the determination of the convex set I' amounts to a pu-
rely geometrical problem; whereas when p = 0, K has to be determined
numerically. The variational problem (4) is a limit analysis problem posed
on the unit cell  with nonclassical boundary conditions {periodicity con-
ditions) and a nonclassical loading ( z is specified). The situation is similar
to that encountered in the homogenization of ideally plastic materials. Mo-
difications which have to be applied to classical limit analysis algorithms in
the latter context have been discussed in Michel and Suquet [12]. Similar
modifications are required when dealing with boundary homogenization. In
the results discussed below, the limit states were obtained by solving an
evolution problem for an elastic ideally plastic material occupying Q. An
additional difficulty arises from the fact that Q is infinite is the direction of
yn. For numerical purposes, Q was truncated at yy = R and the boundary
condition at infinity was replaced by v =0 when yy = R. When R was
large enough, it was checked to ensure that the results were insensitive to
the choice of R. Calculations were performed under plane strain conditions.
The unilateral condition on 4} was dealt with by means of an interface
finite element and the non interpenetration constraint was approximately

0.577
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satisfied by adopting a penalty method. The Von Mises criterion was adop-
ted in order to model the plastic behaviour of the deformable body and the
corresponding recession function 7 reads

3

7o is the yield stress of the material constituting the asperities.

. 2 1/2
7€) = oy€eq, With eeq = ("fijfij) )

(b) (©)

Flg 3: (a) Gepmetry of the asperity. (b) Set K and associated rule.
(¢) Failure mode with no dilatancy (point B). Deformed configuration
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It should be noted that plasticity entails a limitation of the shear
component of the stress vector on ¥° and this remark is in agreement
with Orowan’s modification of the classical Coulomb-Amonton law (see
e.g. Wanheim et ol [3]. For the geometry of the asperity under considera-
tion, the limit under shear conditions is oo/ V'3, i.e. exactly the limit under
shear of the material of which the asperities are composed. Orowan has
suggested a friction model in which the friction shear is proportional at low
pressures to the normal pressure and is equal at high pressures to the yield
stress of the material composing the asperities under pure shear ([3]). Two
mechanisms are involved in these two regimes, as shown in Figure 3. This
result can be obtained directly with a simple plastic mechanism using a slip
line theory approach, with a tigid motion of the upper part of the unit cell
and no motion of the asperity itself. This simple mechanism is in agreernent
with the mechanism observed numerically.

3.3 Limitations of the model

The above model gives good sthenic results (i.e. it predicts the tractions
satisfactorily), but the kinematic predictions as to the dilatancy, seem to be
less physically realistic, at least at first sight, and require re-examining the
hypotheses underlying the model. The model has several variably severe
limitations.

i) The first limitation of the model is the periodicity imposed on the
distribution of the asperities, so that in the case of the local problem, it
was possible to focus on a single deterministic unit cell. This assumption is
less restrictive than it may appear. From the theoretical standpoint, it has
been used to obtain a problem which is clearly stated and amenable to a
mathematical study, providing clear evidence that the parameter involved
is small. The structure of the result (i.e. the convexity of ¢ which indicates
that the contact law is associated) would be similar given a more gene-
ral description of the contact surface. From the numerical standpoint, the
assumption of periodicity leads to unambiguous boundary conditions on
the cell. It would not be difficult to replace these boundary conditions by
others, provided that the new boundary conditions could be properly cor-
related with a statistical description of the contact surface. As regards how
to describe the surface, what would be of real interest would be to develop a
stochastic boundary homogenization approach. This is a considerable task
for nonlinear problems. Returning to geometric considerations, it has been
assumed in this model that the asperities of the deformable body and those
of the substrate match exactly. Although we did not investigate this point,
it should not be difficult to investigate two undulating periodic boundaries
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with the same wavelength but with different profiles. Contractancy (i.e.
close intrication of the asperities of both surfaces) as well as dilatancy are
to be expected in this case. The stochastic case is (again) a difficult open
problem.

i) The second limitation with this approach is the quasi-static approxi-
mation. The energy of elastic waves emanating from the contact surface and
propagating into the solid is "lost” by the small layer and should contri-
bute in the limit € — 0 to the dissipation of the contact zone. It has been
implicitly assumed here that this dissipation is small in comparison with
the plastic dissipation of the asperities. To the best of our knowledge, this
seems to be the rule with metallic materials.

iii) The next, and probably most serious, limitation of the present
approach is that it is based on an equilibrium problem and not on an
evolution problem.

®
Initial Configuration deformed configuration
b u,, u
ANWANVAWL ;
VAR VARV -
Normal displacement Tangential displacement

Fig. 4: Large displacements of asperities.
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In other words, the problem has to be set in terms of velocities, rather
than in terms of displacements, and solved within a finite time interval
with due attention to the displacements, which may be of the order of
magnitude of ¢ at the local scale. Hence a formulation involving the velocity
as the principal unknown and allowing for large displacements, at least of
the order of ¢ (which are large displacements at the level of the asperities),
should be used. It is expected that the normal and tangential displacements
under a constant stress will involve oscillations corresponding te the relative
motions of the one surface over the other. Both the amplitude and the
period of the oscillations involved in the normal displacement are of the
order of €, and the normal displacement vanishes on average within a finite
{non vanishing) time interval; whereas the tangential displacement oscillates
around a linearly increasing average value (the tangential velocity therefore
oscillates around an average constant value). The mechanical formulation
and the mathematical resolution of an evolution problem of this kind are
beyond the present possibilities of the anthors.

4, Mechanistic models

Two simple "mechanistic” models were considered to account for small
scale configuration changes. The first is based on the dilatancy effect es-
tablished with the above mathematical model. The second model which
was inspired by the "Critical state theory” of the Cambridge school, is not
directly connected to boundary homogenization but again involves taking
dilatancy to be a central variable in the understanding of friction. Both
models focus on incipient motions rather than on large slips and are based
on associated laws. The dilatancy of the layer between the bodies in contact
plays the role of an internal variable describing the mechanical state of the
contact surfaces.

4.1 A model with a two-fold mechanism

In the first rodel, successive configurations are considered and the
unknown u, which was previously interpreted as being either a displacement
or a velocity field, is now definitely a velocity field. The evolution is viewed
as a sequence of equilibriums to which the above reasoning is applied. To
simplify, the model is presented here only for piecewise straight asperities,
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as depicted in Figure 5.

-
.

Fig. 5: Motion of asperities. A simplified model
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Changes in configuration are expressed in terms of a scalar parameter
d, namely the distance between a plane materially attached to the defor-
mable body and a plane materially attached to the rigid substrate. Both
planes are assumed to coincide when d = 0. When d # 0, the above reaso-
ning can be reproduced and a convex set K(d) of admissible forces can be
defined. For the unit asperity considered in Figure 5, I'*(d) is a half-line
and K(d) a segment. d acts as a softening variable: the limit under shear
conditions of the homogenized material, which is implicitly contained in
K(d), is a decreasing function of d. Assume now that the deformable body
is in the initial configuration (d = 0 and subjected to a force such that the
shear stress |o;| is proportional to the normal pressure —o,, but below the
shear strength predicted by K (0). The kinematic mechanism activated first
is the dilatancy and the two surfaces begin to separate. d increases while
K (d) decreases. Since the overall force remains constant, the shear strength
and g, will coincide at some value of d and the plastic flow mechanism will
consequently be activated. The resulting motion is possibly purely tangen-
tial. In conclusion, there exists a time interval during which the dilatancy
prevails. Afterwards, the prevailing mechanism will be the plastic flow of
asperities.

The evolution equation for the pair of unknowns (u,d) reads:

-u € 311{(@ (o), d= —tin.

An even simpler and more explicit model can be proposed:

ol < —n, lo 7@, ()= T (1-7) G

—Uy = (Al + Az)Sigﬂ(Ut), —Un = Alp,, d= — U

A1 and )Xo are the two positive multipliers corresponding to the dilatant
mechanism and the shear mechanism associated with the constraints (5).
u and h are the two material parameters of the model correlated with the
shape of the asperities and with their height.

4.2 Elliptic model

The second model was inspired by the " Critical state theory” developed
for frictional materials (clay, sand, etc) by the Cambridge school [13]. An
elliptic surface is considered

(2) oty ) ®
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and the normality rule is adopted

2/\ Pe g
Uy = —Foi, U, = —2A (an + ?) , d=—u,, A >0 (7)
The sign of (on + %) delimits the region of dilatancy 4, < 0 from the
region of contractancy u, > 0, while the Coulomb’s cone is the locus of
"critical states” (u, = 0).

ko critical state u, =0

dilatancy u
(u, <0)

u  contractancy
(u, 20}

|- oy

Phase A Phase B

Fig. 6: Elliptic model. Response along a path of applied normal pres-
sure followed by a path of applied shear.
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The pressure p. is related to the distance d between the two contacting
bodies by a consolidation relation. A simple example of this relation is:

pe = poexp(—K(d — h)). (8)

It is instructive to examine the response of the model to a path of imposed
normal pressure followed by a shear (Figure 6). During phase A, where the
normal pressure is progressively increased, u, is positive and d decreases,
i.e. the contact between the two bodies becomes more intricate. The conso-
lidation pressure increases and the response of the model is stable and
hardening. In phase B, where the shear force is applied, the contractancy
of the layer decreases up to a critical state where it vanishes. At this point
the shear cannot be increased while the normal pressure is maintained, since
(0+,0,) would be in the region of dilatancy which from (6)(7) (8) would yield
an increase in d, i.e. a decrease in the ellipse size, in contradiction with the
increase in the applied shear. The Coulomb’s cone is therefore interpreted
as being the locus of critical or unstable states. The present model involves
four material parameters. ¢ and h are correlated with the shape of the as-
perities, while py and k, which are not justified here by micromechanical
arguments, have to be measured directly. po is the normal pressure under
which the asperities yield in the initial configuration.

Conclusions

A mathematical model based on the homogenization of boundaries
with small asperities is presented. The model predicts a possible dilatancy of
the layer surrounding the contact surface. It is not only due to shortcomings
but is also physically relevant at least in the earliest stages of the relative
motions of the contacting bodies. Two simplified models are proposed to
incorporate the dilatancy as a softening variable. More attention should be
paid in future studies to the effects of contractancy or dilatancy in the thin
layer involved in the contact.
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