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Abstract

We study here the discretization by monotone finite volume schemes of multi-dimensional nonlinear
scalar conservation laws forced by a multiplicative noise with a time and space dependent flux-function and
a given initial data in L> (Rd). After establishing the well-posedness theory for solutions of such kind of
stochastic problems, we prove under a stability condition on the time step the convergence of the finite
volume approximation towards the unique stochastic entropy solution of the equation.
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1 Introduction

We are interested in the Cauchy problem for a nonlinear hyperbolic scalar conservation law in d space
dimensions with a multiplicative stochastic perturbation of type:

{ du + div [ﬁ(x,t)f(u)]dt g(u)dW in QxR x(0,T),

(1)

u(w,z,0) = wuo(x), weQ, zeRY

where div is the divergence operator with respect to the space variable (which belongs to Rd), d is a positive
integer, T'> 0 and W = {W;, F;0 < t < T} is a standard adapted one-dimensional continuous Brownian
motion defined on the classical Wiener space (2, F, P). As mentioned by J.U. Kim [Kim06], by denoting
Q=R%x (0,T) this equation has to be understood in the following way: for almost all w in  and for all ¢
in D(R? x [0,T7))

/Rd uo(z)p(z,0)dr + fQ u(w, z,t)0rp(x,t) + 0(x,t) f(u(w, z,t)).Vap(z, t)dzdt

_ fQ A ' gu(w, 2, 5))AW (5)Brp(e, t)dodt. 2)
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In order to make the lecture more fluent, we omit in the sequel the variables w,x,t and write u instead of
u(w, z,t).

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is not unique
in general. The mathematical stake consists in introducing a selective criterion in order to identify a unique
solution. In the present work we consider a stochastic version of the entropy condition proposed by S.N.
KRruzHKOV in the 70s, the one used in [BVW12] and adapted to a space and time dependent flux-function,
which is presented in Section 2.

We assume the following hypotheses:

Hi: uo € L*(RY).

Hy: f:R - R is a Lipschitz-continuous function with f(0) = 0.

Hs: ¢g:R — R is a Lipschitz-continuous function with g(0) = 0.

Hy: 9 e CH (R x [0,T],R?) and div[v(z,t)] =0 ¥(x,t) e R* x [0, T].
Hs: There exists V < oo such that |0(z,t)| <V V(z,t) e R? x [0,T7].

Hg: g is a bounded function.
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Remark 1 (On these assumptions)

. Hi to Hs are used in the present work to prove the well-posedness of Problem (1). Note that, as it is
classically done for hyperbolic scalar conservation laws, one can assume by convenience that f(0) =0
without loss of generality.

. g(0) =0 is a technical condition which allows us to show the well-posedness of our problem and is also
used in the present work to show a priori estimates on the finite volume approximate solution.

. Hg is probably a technical assumption, it is particularly used p.23 to show the convergence of the term
denoted Sy*.

1.1 State of the art

Only few papers have been devoted to the theoretical study of scalar conservation laws with a multiplicative
stochastic forcing, let us mention in chronological order the contributions of [FN08|, [DV10], [CDK12],
[BVW12], [BVW14], [Hof14]. Concerning the study of numerical approximation of these stochastic problems,
there is also, to our knowledge, few papers. Let us cite the work of [HR91| and also its recent generalization
to the multidimensional-case [Baul4] where a time-discretization of the equation is proposed by the use
of an operator-splitting method. Let us also mention the paper of [KR12] where a space-discretization of
the equation is investigated by considering monotone numerical fluxes. In a recent submitted work, [BCG]|
proposed a time and space discretization of the problem and showed the convergence of a class of flux-
splitting finite volume schemes towards the unique stochastic entropy solution of the problem by using the
theoretical framework of [BVW12]. For a thorough exposition of all these papers, we refer the reader to the
introduction of [BCG]|. Note that to the best of our knowledge, in the case of a space and time dependent
flux-function, stochastic equations of type (1) have not been studied yet from a theoretical (respectively
numerical) point of view, neither by means of entropy formulation (respectively finite volume) framework
nor by any other approachs.

1.2 Goal of the study and outline of the paper

The aim of the present paper is to fill the gap left by the previous authors by introducing a convergence
result for a both time and space discretization of multi-dimensional nonlinear scalar conservation laws forced
by a multiplicative noise and with a time and space dependent flux-function. More precisely, we firstly show
that under assumptions Hy to Hs, Problem (1) is well-posed. Secondly, we introduce a general finite volume
monotone scheme for the discretization of such a problem and, by assuming additionally that hypothesis
Hg holds, we prove that the associated finite volume approximate solution converges in LP (2 x Q) for all
1 < p <2 to the unique stochastic entropy solution of the equation.

The paper is organized as follows. In Section 2, by adapting the work of [BVW12] to the case of a time
and space dependent flux-function, we propose the definition of a stochastic entropy solution for (1) and
state the well-posedness result of the problem. For the sake of clarity, the proof of this theoretical result
is presented in Appendix A. In Section 3 we define the general monotone scheme used to approximate the
stochastic entropy solution of (1). Then, we give the main result of this paper, which states the convergence
of the approximate solution towards the unique stochastic entropy solution of the equation. The remainder
of the paper is devoted to the proof of this convergence result. In Section 4, several preliminary results
satisfied by the finite volume approximate solution denoted ur  are stated. Then, Section 5 is devoted to
show the convergence of ur ; towards the unique stochastic entropy solution of Problem (1).

1.3 General notations

First of all, we need to introduce some notations and make precise the functional setting.

. Q=R¥x(0,7T).

. Throughout the paper, we denote by Cy and C, the Lipschitz constants of f and g.

. |z| denotes the euclidian norm of  in R? and z.y the usual scalar product of  and y in R%.

. |Ill« denotes the L**(R) norm.

. E[.] denotes the expectation, i.e. the integral over {2 with respect to the probability measure P.

. D (Rd x [O,T)) denotes the subset of nonnegative elements of D(R? x [0, T)).

. For a given separable Banach space X we denote by Ni(O,T, X)) the space of the predictable X-valued

T
processes endowed with the norm ||¢||32 orx)=FE [[ ||¢||§(] (DA PraTO-ZABCZYK [DPZ92] p.94).
wA T 0

. A denotes the set of any C*(R) convex functions with compact support. Note that in particular for any
neA, n" and n” are bounded functions.

. ® denotes the entropy flux defined for any a € R and for any smooth function n € A by
D(a) = f n'(0)f'(¢)do. Note in particular that ® is a Lipschitz-continuous function.
0
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2 The continuous problem

Let us introduce in this section the definition of a solution for Problem (1) and the existence and uniqueness
result which ensures us the well-posedness of such a problem. This result is obtained under hypotheses H1
to Hs and is adapted from the work of [BVW12].

Definition 1 (Stochastic entropy solution)

A function u of N2 (O,T, Lz(Rd)) n L= (O, T; L2(Q x Rd)) is an entropy solution of the stochastic scalar
conservation law (1) with the initial condition wo € L*(R?), if P-a.s in Q, for any n ¢ A and for any
e D' (R % [0,7))

0 < fRd n(UO)QO(-T,O)d.T‘FLn(u)at@($7t)d$dt+L@(u)f}(x,t),vzg@(l”t)dwdt
T @tz 0+ L [ ot s

For technical reasons, as in [BVW12] and [BCG], we also need to consider a generalized notion of entropy
solution. In fact, in a first step, we will only prove the convergence of the finite volume approximate solution
uT,, to a measure-valued entropy solution. Then, thanks to the result of uniqueness stated in Theorem 1,
we will be able to deduce the convergence of ur i to the unique stochastic entropy solution of Problem (1).

Definition 2 (Measure-valued entropy solution)

A function u of N7 (O,T, L? (Rd x (0, 1))) nL™ (O,T; LQ(Q x R? x (0, 1))) s a measure-valued entropy so-
lution of the stochastic scalar conservation law (1) with the initial condition ug € L? (RY), if P-a.s in Q, for
any n €A and for any ¢ € D*(Rd x[0,T))

0 < /Rd n(uo)ap(:c,O)dx+fQfoln(u(.,a))@tgo(z,t)dadxdt+/Q[)1CP(u(.,a))ﬁ(m,t).vzgo(x,t)dadxdt
+fonRdfoln'(u(.,a))g(u(.,a))go(x,t)dadde(t)+%fQfolg2(u(.,a))n"(u(.,a))go(x,t)dad:vdt.

Theorem 1 Under assumptions Hi to Hs there exists a unique measure-valued entropy solution for the
Problem (1) and this solution is obtained by viscous approzimation. Moreover, it is the unique stochastic
entropy solution in the sense of Definition 1.

Remark 2 The proof of this theorem is presented in Appendix A. The existence proof relies on a parabolic
reqularization of (1) and the uniqueness result is obtained by adapting the Kruzhkov’s doubling variable
technique of the deterministic setting to the stochastic case as it is done in [BVW12].

3 Main result

In the sequel, assume that assumptions H; to Hg hold. Let us first give a definition of the admissible meshes
for the finite volume scheme.

3.1 Meshes and scheme

Definition 3 (Admissible mesh) An admissible mesh T of R? for the discretization of Problem (1) is
given by a family of disjoint polygonal connected subset of R® such that R is the union of the closure of the
elements of T (which are called control volumes in the following) and such that the common interface of any
two control volumes is included in a hyperplane of R®. It is assumed that h = size(T) = sup{diam(K), K ¢
T} < oo and that, for some & € R}, we have

ah® <|K|, and |aK\<§hd*1, VK eT, (3)
«

where we denote by
. & the set of all the interfaces of the mesh T .
. OK the boundary of the control volume K.
. |K| the d-dimensional Lebesgue measure of K.
. |OK]| the (d - 1)-dimensional Lebesgue measure of OK.
. €k the set of interfaces of the control volume K.
. N(K) the set of control volumes neighbors of the control volume K.

. K|L or ok, the common interface between K and L for any L e N(K).
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. nk,L the unit normal vector to interface K|L, oriented from K to L, for any L e N(K).

It follows easily from (3) the following inequality, which will be used several times later :

K| 1
T«

<= 4
|K| ~ a2h )

We now define the general monotone scheme. Consider an admissible mesh 7 in the sense of Definition 3.

T *
In order to compute an approximation of u on [0,7'] we take N € N* and define the time step k = N eR}.

In this way [0,7] = | [nk, (n + 1)k].

n=0
The equations satisfied by the discrete unknowns denoted by uk, n € {0,...,N -1}, K € T, are obtained by
discretizing Problem (1). For the discretization of such a problem, we need to define the numerical flux.

Definition 4 (Monotone numerical flur) We say that a function F € C(R* R) is a monotone numerical
fluz if it satisfies the following properties:

. F(a,b) is nondecreasing with respect to a and nonincreasing with respect to b.

. There exists F1, F> >0 such that for any a,b € R we have |F(b,a) - F(a,a)| < Fila-b| and |F(a,b) -
F(a,a)| < Fala - b

. F(a,a) = f(a) for all a e R.

Remark 3
. It is not necessary to suppose F' to be continuous, even with respect to each variable separately.

. 1t is possible to choose a numerical flurz F depending on T, K|L,n, as soon as the constants F1, F> can
be chosen independently of T,K|L,n. For the sake of readability we will consider in what follows a
numerical flur F independent of T, K|L,n.

The set {u%,k e T} is given by the initial condition
1
uge = 04 /I;uo(x)dx, VK eT. (5)

The equations satisfied by the discrete unknowns u, n € {0,...., N — 1}, K € T are given by the following
explicit scheme associated to any monotone numerical flux F : for any K € T, any n € {0,..., N -1}

K n n n n n n n n n Wn+1 _Wn
u(ulz(ﬂ—w()Jr > |0K,L|{UK,LF(UK,UL)—UL,KF(UL,UK)}:|K|9(UK)7, (6)
k LeN (K) k

where, by denoting d~y the (d — 1)-dimensional Lebesgue measure

" 1 (n+l)k
VK,L

faK L(a(m,t).nK,Lydy(x)dt,

- k|O'K,L‘ nk

" 1 (n+l)k . . 1 (n+l)k R B
o 7f f (6(z,t).n1.5) dfy(m)dtzif f (6(z,).nx..) dy(z)dt
OK,L OK,L

B k|O'K,L| nk k‘|0'K,L| nk
and W" = W(nk) Vne{0,....N —1}.

The approximate finite volume solution w7, may be defined on £ x R% x [0,T) from the discrete unknowns
uy, KeT,ne{0,..,N -1} which are computed in (6) by:

ur k(w,z,t) = uk forweQ,ze K and t € [nk, (n+1)k). (7)

Remark 4 Note that

n n 1 (n+1)k
VK,L ~VL,K = 777 f / (z,t).ni, pdy(x)dt
’ 7 klox,L| Jnk OK,L

1 (n+l)k
n n
and VKk,L T VL Kk =

/ [0(x,t).nr, Lldy(z)dt.
OK,L

k’|UK,L| nk
Moreover, since div[v(z,t)] =0 for any (x,t) e R* x [0, T], we have

Z |0'K,L|('U?(,L - 'UZ,K) =0. (8)
LeN(K)
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Indeed,

" n 1 (n+l)k R
Z lox,L|(vi,r. — VI, k) = Z lox,o|| —— / f (x,t).nk,pdy(x)dt
k|0’K,L| nk OK,L

LeN(K) LeN(K)
1 (n+l)k

- % nk
Remark 5 (On the measurability of the approzimate finite volume solution) Let us mention that

using properties of the Brownian motion, for all K in T and all n in {0,...,N -1}, u is Fpi-measurable
and so, as an elementary process adapted to the filtration (F¢)sso0, wr x is predictable with values in L?(R?).

fK div[#(z, t)]dadt = 0.

3.2 Main result

We now state the main result of this paper.

Theorem 2 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to Hg
hold. Let T be an admissible mesh in the sense of Definition 8, N e N* and k = % e R} be the time step. Let
ut,k be the finite volume approzimation defined by the monotone finite volume scheme (6) and (7). Then
uT,k converges to the unique stochastic entropy solution of (1) in the sense of Definition 1, in LT (2 x Q)
for any p <2 as h tends to 0 and k/h tends to 0. We highlight the fact that here the notatation L7 (2% Q)
is used to denote a locally in space integrability property. More precisely it means that the convergence holds
in LP(Qx K x (0,T)) for any compact K of R%.

Remark 6 Under the CFL Condition
_2
a“h

V(Fl +F2) (9)

k<(1-¢)
one gets for & = 0 the Lf’LZ,’w stability of ur k stated in Proposition 1 p.5, and for some & € (0,1) the
“weak BV” estimate stated in Proposition 2 p.9. In the deterministic case, condition (9) for some & € (0,1)
is sufficient to show the convergence of ur i to the unique entropy solution of the problem, whereas in the
stochastic case this condition doesn’t seem to be sufficient to show the convergence of the scheme, that is
why we assume the stronger assumption k/h - 0 as h — 0.

Remark 7 This theorem can easily be generalized to the case of a stochastic finite dimensional perturbation
of the form g(u).d W where g takes values into R and W is a p-dimensional Brownian motion.

4 Preliminary results on the finite volume approximation

4.1 Stability estimates

Let us state several results on the finite volume approximate solution wr ; defined by (6) and (7).

Proposition 1 (Lf"LE,,Z estimate) Let T > 0, uo € L*>(R?), T be an admissible mesh in the sense of
Definition 3, N e N* and k = % e R} satisfying the Courant-Friedrichs-Levy (CFL) condition

~2
a“h
kS ————~. 10
V(F1 + FQ) ( )
Let ur . be the finite volume approzimate solution defined by (6) and (7).
Then we have the following bound
c2r/2
||u7kaL°°(O,T;L2(Qde)) e’ / ||u0||L2(]Rd)'
As a consequence we get
2 TC? 2
T kllT2oxq) < Te” 9 l[uollp2 ga)-
Proof. Let us show by induction on n € {0,.., N — 1} the following property:
n \2 2\n 2
> IKIE[(uk)®] < (1 +kCg) " luoll2 (gay- (Pn)

KeT

First one has

K§T|K\E[(u?<)2] K§T|K|E[(|Il(|[z<uo(z)dx) ]

2
||U0||L2(Rd)-

IN
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Set n € {0,..., N -1} and assume that (P, ) holds. Let us multiply the numerical scheme (6) by u%, we thus
get
‘K| n+1 n n _ n n n n non n
& [ux  —uglug = - Z ‘O—K,L|{UK,LF(UK7UL) - UL,KF(ULvuK)}uK
LeN (K)

K n n n n
+%g(uK)(W oW Jug

And by using formula ab = 1[(a +b)* - a® - b*] with a = u}"" - u% and b =u} we obtain

%% [(i)? = (i) = (Wi =) == Y JowH{vk n F(ufe,ul) - of i F (uf ufe) fule
LeN (K)
gy v
and then
K]

n n K n n n n n n n n n
[ = ) =Bl e kS ol P ke ) o s PG uk) bk

2 LeN (K)

+|Kg(ui ) (W™ = W™ )ul.

Using the finite volume scheme (6) we can replace (v —u%)? and we take then the expectation. Thanks

to the independance between the random variables (W™ — W™) and ul, together with the equality
n n n 2 n n n n

E[(g(ui) (W™ = w™)*] = B[ (g(ui)?[E[(W™*" - w™)?] = kB[ (9(uk))?], we get

|K]| k

2

n n K n n n n n n n n n

E[(uik™)” - (uk)’] ! |E (_ > |UK,L|{UK,LF(UK7UL)_vL,KF(UL7uK)}+g(UK)(W ow ))
2 2 ‘K| LeN (K)

~KE| Y ownl{vi L F(uf,ui) - vz,KF(uz,u@}uz] + [K|E[g(ui) (W™ - W]

LeN (K)
k2 1 kx|
=Bl loxl{vi L F(uic,ul) - of k F(uf, ui) } | |+ 25 B[(a(uk))?]
2|K| LeN (K) 2
-kE| > |UK,L|{v?(,LF(uT}(,u2)—vaKF(uz,u?()}u?(]. (11)
LeN (K)

Using (8), which states that ) |0k, |(vk 1 —vf, k) = 0, this equality can be rewritten as
LeN (K)

K n n
%E [(ux™)? - (uk)?] =B1 - B2 + D,

2 2
where 8= 2Bl (57 foeal{okn (PG ) - 1(00) = (PG00 - £050)) )
2|K]| LeN(K)

B - kE[ S s ook (F e, uf) - F(u3)) - ofae(F(uf ufe) - f(u;z))}u;z]
LeN(K)

and D= @E[(g(uz)f].

Let us now define B3 by

Bask 3 ol o {uk (Pt - 1)) - o (PR - 1)
(K,L)eTn,

_yz’K{u}(F(uz,u’}() - f(u?()) —uZ(F(uz,u?() - f(uf))}]

where T, = {(K,L) e T>: Le N(K) and u} >u}}. One notes that » Ba = Bs.
KeT

Denoting by ¢ the function defined for any a € R by ¢(a) = / sf'(s)ds, an integration by parts yields, for
0
all (a,b) e R?

b b
o(b) = 6(a) = [ sf'(8)ds =b(f () ~ F(a,b)) = a(f(a) = F(a,0) = [ (F(s) = F(a.b)) ds.
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By using this formula, the term Bs can be decomposed as Bs = B4 — Bs where

(K,L)eTy

B - E[ 5 ook [0 - Faiainas) o [ 00 —F(u’z,uz»ds)}]

and

Bs = E[ Z klok,Ll(vk L - UZK){¢>(UTIL() - ¢(U7Ll)}:| .

(K,L)eTn

Note that since div[o(xz,t)] =0 V(z,t) € R? x [0,T], Bs = 0. Indeed,

(; f(n+1)k [,K ) o(x, t).TLK,Ld’Y(ib)dt) {gs(u*;{) , ¢(u2)}]

k|0’K7L| nk

Bs=E| Y klox.
(K,L)e%y

(n+1)k = n
B L7 L retmssao)ot

' (/;) fK T’(w’t)“LdeW(m)dt) ¢(uz>}]

:E[ Z Z P(uk) /;:Hl)k fUK.L f)(x,t).nK,Ld’y(:C)dt:l

KeT LeN (K)

=K

n (n+1)k .
-E L;TQS(UK) fnk /K dlv[v(x,t)]dxdt]
=0.

Let us now turn to an estimate of By.
We now use the following technical lemma from [EGHO00] (Lemma 4.5 p.107):

Lemma 1 Let G: R - R be a monotone Lipschitz-continuous function with a Lipschitz constant Cg > 0.

Then:
L (6(d)-6(c))* Ve, deRr.

‘fcdg(t)—g(c)dt > 50

From this lemma, we can notice that for all a,b € R we have

b b
f f(t) - F(a,b)dt > f F(a,t) - F(a,a)dt > %(f(a) - F(a,b)) (12)
a a 2
and
b b 1 5
f F(t) = Fa,b)dt > f F(t,0) = P(a,b)dt > 5 (f(b) - F(a,b)) (13)
a a 1
Multiplying (22) (respectively (23)) by F (respectively by ! ) and adding the two inequalities
F1+ Fi+ Fs

yields:
fab F(t) - F(a,b)dt > m [(£(a) - F(a,))” + (£(b) - F(a,5))7].

We can deduce from this inequality that

2 {(F(u}?,UZ)ff(u}"%))2+(F(u}’<,u'i)ff(u2))2}

Bs=Bizk Y |okilB|—t
3=DBs2 OK,L 2F + F)

(K,L)eTy,

+2<;ffpg){(f(u%>—F(uhu’%))z+(f(uf)‘F(“z7“%’)2}]' o

This gives finally a bound on Bs. Let us now turn to the study of Bj.
We have, after summing over K € T

S Bi- Y RE[( > ol (P - F030) =k (P ) - F030)} ) ]

KeT KeT 2‘K| LeN (K)
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UTL
Using the notations A = F(uyk,u}) — f(uk), B=F(ul,uk) - f(uk), (= #,
Vg, T VL Kk
vn
L;Kn , C€(0,1) we get using Cauchy-Schwarz inequality that
YL,k

1-¢=

n
UK,L

( Z UK,L'{'U?(,LA_'UZ,KB}) —( Z UK,L|(U?<,L+UZ,K){CA—(1—C)B})

LeN (K) LeN (K)
n n n n 2
< Z ‘UK,LK'UK,L +7}L,K) Z ‘UK,LKUK,L +UL,K){CA+(1—C)(—B)}

LeN (K) LeN(K)
< Y lokrl(wrkr+vir) Y. loxo|(vir + UZ,K){CAQ +(1- C)BQ}-
LeN (K) LeN (K)

Since (v 1 +vf k)¢ =vg 1 and (v +vf x)(1 - () =vL i, we get the following estimates

Z 1\22‘K|(Lez

KeT KeT N (K)

)xE[ Z ‘JK,L|{U;L<7L(F(U7IL<7U’Z)_f(uTIL{))Q

LeN (K)
PG ) - 1)) )

Using the fact that

> ok, +vE k) < V]OK| (16)
LeN (K)

which implies thanks to the mesh properties (4) and the CFL Condition (10) that

k n n 0K & h 1 1
Z |0'KL|(’UKL+’ULK)§]€V‘ |< o

ko < S 17
K| ey ' ’ K| ~V(Fi+F) a*h Fi+ (a7)

one finally gets by reordering the summation in (15)

S e ¥ gl (P - 1) (Pl - F0)))

KeT (K,L)eX, 2(F1 + 1)
{0 - P (1) - P} | s

In this way, using (14) and (18), since

> 5Pl

KeT KeT

(Bl—BQJrDJru [(uf) ])

one gets

K| nt1\2 kK] L |K 2
53 PR 3 SR 3 Ble (i)

<y @(ukc;m[(u;;)?].

KeT

In this way, using (P,) we get
n n \2
> IKIB[(ui™)?*] < Y IKI(1+kCo)E [(uk)’]
KeT KeT
<(1+ kc;)n+1||“0||i2(nad)~

We deduce that (Py,+1) holds, and we conclude by induction that

This gives the L{°L? , stability of the approximate solution. As a consequence, we have
g t w,T y

c?r/2
(Oxrd)) S €7 / llwoll L2 (ray-

N-1

luriliz@oeey = 2 2 HKIE[(uk)®]

n=0 KeT

IN

c3r 2
Te™ s |uollz2(ma)-
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4.2 Weak BV estimate

Proposition 2 (Weak BV estimate) Let T be an admissible mesh in the sense of Definition 3, T > 0,
N eN* and let k = % € R} satisfying the CFL Condition

a’h

V(F1 +F‘2)7 (19)

k<(1-6)
for some £ € (0,1).
Let {u}‘(,K eT,ne{0,....N - 1}} be given by the finite volume scheme (6).
We have then the two following bounds :

1. There exists Cy € Ry, only depending on T, uo,&, F1, Fo and Cy such that

TEY %

n=0 KeT LeN(K)

B [vfe L {F(ufe, ui) = f(uie)} + o e {F(u, uie) - fui)} ] < &

Let T >0 and R >0 be such that h < R, we take N € N* and define k= % e R}. We also define
Tr={K €T such that K c B(0,R)} and T = {(K,L) € Tg such that L e N(K) and uf > u}}.

2. There exists Ca € R}, only depending on R,d,T,&,uo,&, F1, F> and Cy such that

Z_:lk > |JK7L|E['U}L(VL{ max (F(d,c) - f(d))+ max (F(dc) f(c))}

7 <esd<u’y u<es
n=0 (K,L)e‘zg uf <e< d< c<d<u

+UZK{ max (f(d)-F(c,d))+ max (f(c)- F(cd))}:ISCzhlm

u? <c<d<ul uf <c<dsufe

Proof. Recalling that by (8) Y |ox,L|(vk,L — VI k) =0, we can rewrite the numerical scheme (6) as
LeN(K)

Bt —uy + 3 (v (P ) = )Pl ) - k) )

n Wn+1 _ Wn
= |Klg(uic) (20)

Multiplying this equation by ku}, taking the expectation and summing over K € T and n € {0,...,N -1}
yields A+ B = D with

A= Z Z |K|E[(u”+1—u?()u?<]
n=0 KeT
N-1

B=Y ¥ ¥ kaK,L|E[{v;z,L(F<u?(,uz>—f(u?a)—vz,K(sz,u}z)—f(u;z))}u;z]

n=0 KeT LeN (K)

D=y 3 IKIE[g(uiuk (W - w™)] =o.

n=0 KeT

Note that the term D is equal to 0 since g(ux )ufk is Fni-measurable, it is therefore independent of the
increment W™ — W™ and we have moreover the equality

E[(g(ui) (W =w™)’] = B[(9(ui))* | B[(W"* = W™)?] = kB[ (9(ui))? .
[(a+b)?-a?-b?] with a = uF™" —uk and b=u}k we get

1
2

A=-1S S IB [ - k) ]+ 5 X IKIB[R) - ).
=0 KeT KeT

Using the formula ab =

and using the equivalent formulation of the finite volume scheme (20) to replace up' — u7% gives

A:A1+A2,

where

1N 1 N k 2
4 - A s ke ( (- ks |aK,L|{v;z,L(F<u?{,u’z>—f(uzz))—uz,K(F(uz,u%)—f<u%>)})

2 n=0 KeT |K| LeN (K)

and

1
A = LS EIE[@? - @)

KeT



Since g(ufk) {U?{L(F(u?(,UZ) - fuk)) - UZK(F(uZ, uk) — f(u?())} is Fnr-measurable it is therefore in-
dependent of the increment W™ — W™, so that

1 = n 2 k2 n n n n n n n n :
-3 2 > HEIE[(9(ui)’] + 7 B ( > Jow.cl{vi,n (Flulc,ul) - f(ui) = vEe(F(ul,ufe) - f(uk )}) :
n=0 KeT | ‘ LeN (K)
Similarly to (17), it follows from the CFL Condition (19) and the mesh properties (4) that
k

mLEZ

N(K)

(21)

F+F'

Using (21) and Cauchy-Schwarz inequality, we deduce that

A 2

KeT

A [\)\l—‘

Nzk z |K\E[(g<uK)) ]
¢

Sy |ULUE[K{ max | (F(de)= f(d)"+ | max . (F(d,c) - £(e))°}

2 n=0 (K,L)E‘In (F1 + Fy uf <c<d<ul uT <e<d<ul,

wop | max (f(d)-F(ed)) + (f(c) - F(c,d)) }]

ma.
"< <d<u" Z<C<d< n

where we recall that T,, = {(K,L) € T?: L e N(K) and u% > ul}.
Thus,

1 2 rc? 2 1 2
Az _QTCge g||U0||L2(Rd)—§||U0||L2(Rd)

_ (1 &) Zlk Z ‘UK’L|E[U;{’L{u max (F(dc) f(d)) max (F(dc) f(c))}

2(F1 + FQ) n=0 (K,L)eT, L<c<d<u" "<C<d<

+’U27K{ max (f(d)- F(cd)) max (f(c) - F(c,d)) }:|

uf <c<d<uly uf <c<d<uly

We now study the term

N-1

B=2 k), 3 IJK,LIE[{v%,L(F(u%,uZ) = J(ui)) = oixc (F(ui, ui) - f(u?())}u%].
n=0 KeT LeN(K)

Reordering the terms and using the result obtained in the proof of Proposition 1 (Bs = Ba4), we get:

ko3 |aK,L|E[v?<,L{uz(F<ux,u’z> - J(ui)) ~ul (Flufe,ui) - f(uf) }

(K,L)eTn

hal-01061019, version 1 - 4 Sep 2014

(R (P k) ) = (P ) - )|

b S e furen [0 - Paaiss i [ 56~ Pl

(K,L)e%,, K
Taking the sum over n, one can then rewrite B in the following way
N-

B= ko> |0'K,L|E|:'U?’L{U?((F(u?(,uz)—f(u?())—UZ(F('LL?(,U,Z)—JC(UZ))}

n=0 (K,L)eT,

[un

(R P k) ) = (P i) - )|
R n uz n n n ’Ul;% n n
=2k X |UK,L|E[{’UK,L fn f(s) = Fuf,up)ds +vp, i /n f(S)*F(ULvuK)dS}]
n=0 (K,L)e%, UK UL
Let us now turn to an estimate of B.

For this purpose, let a,b € R and define C(a,b) = {(c,d) € [min(a,b), max(a,b)]*: (d-¢)(b- a) > 0}. Thanks
to the monotonicity of F, the following inequality holds for any (¢, d) € C(a,b):

fabf(s) ~ F(a,b)ds > fcdf(s)—F(a, b)ds > fcdf(s) ~ F(e,d)ds.

10
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We now use again Lemma 1 p.7 and deduce that for all (¢, d) € C(a,b):

b d d 1 2
[ F@) - Flabds> [T ) - Fledyds> [T Fes)- Fled)ds> 7= (o) - Fe.d)”  (22)
and

fabf(s)—F(a,b)dwfcdf(s)—F(c,d)ds>fc F(s,d) - F(c,d)ds > (f(d) F(e,d)®  (23)

Multiplying (22) (respectively (23)) by 7 >__ (respectively by 7 ilF ), taking the maximum for (c,d) €
2 1+ Fo

C(a,b) and adding the two inequalities yields:

/abf(s) _ F(a,b)ds >

(c¢,d)eC(a,b)

72(}7114_ ) [(c’drﬁgz(a,b) (f(e) - F(e, d))2 + max (f(d)-F(c, d))2] .

Taking the sum over n, we can deduce from this last inequality that

N-1
Bz Yk Y |0K’L|E|:v?(,L{ max (F(d,c)- f(d)) max (F(d,c)- f(c))}

n=0 (K,L)e%, 2(F1 + FQ) uL<c<d<u” <c<d< ”

u’f <e<d<uy

+U27K{ nglfb)iu (f(d)-F(c, d)) max (f(c) - F(c,d)) }]

Therefore, since A + B =0, by denoting C = (1 + TCgeTC.g)HuOHQLQ(Rd)

n=0 (K,L)cTn u” <e<d<u, u’t <e<d<u

%C’ > 2(F1+F2 Zk > |O'K,L|E|:’U%7L{ max (F(d,c) - f(d)) max (F(d,c)—f(c))2}

u’f <e<d<u u’f <e<d<u,

+vZ’K{ max (f(d) F(cd)) max (f(c) F(cd)) }:|,

which, in turn, gives the existence of C; € R}, only depending on T, Cy,Cy,& and |luollr2(ray such that

Z_:lk Z O’K,L|E|:’U;L(7L{ max (F(d c) - f(d)) o nax (F(d,c)—f(c))Q}

n=0 (K,L)eTn L<c<d< LSCSdSu

+UZK{ max (f(d)-F(c, d)) max (f(c) - F(c,d)) }] < Ci. (24)

uf <c<d<uly uf <c<d<uly

Moreover by reordering the summation we have in particular

N-1
2 2
kY X lolB [vie n{ F(uie,ui) = Fuio)} + o e { F(u,uic) - fuio)}' ] < €,
n=0 KeT ocefgi
o=K|L
which proves the first point of the proposition. Let us now turn to the second point of the proposition.
Set R > 0 be such that h < R and define the sets

Tr = {K €T such that K c B(0,R)} and % = {(K, L) € T4 such that L e N(K) and u}% > u}}.

Now we aim to estimate

{Z_:lk > |UK’L|E|:U?(’L{1L max (F(d,c) - f(d))+ max (F(d,c)—f(c))}

n <e<d<u™ ”< <d<u
n=0 (K,L)E’Iﬁi T Sesd<ufe c<dg

il max  (F@)-Fled)+  max  (F(0)-F d))}]}
Let us denote by
T = max (F(d c)-f(d))+ max (F(dc)- f(c))

u2<p<d<u” u" <c<dgu "

and
Tp= max (f(d)-F(c,d)+ max (f(c)-F(c,d))

uf <c<d<uly u <e<d<ufy

11
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Using Cauchy-Schwarz inequality, one gets

N-1 2
( Xk \UK,L|E[U?<,LT1 +vZ,KT2])

n=0 (K,L)exR

N-1 N-1 n T n T 2
S(Z k Z 0K7L|(vﬁyL+vZ,K))x(Z k Z |O’K7L|E|:(UK,L 1+ ur g Te) ])

n n
n=0 (K,L)eT} n=0 (K,L)eTR Yk, TtV K

N-1 N-1
S( kY lokcl(vir +UZ,K)) x ( koY |UK,L|E[U?<,LT12 +'U2,KT22:|)7

n=0 (K,L)eTR n=0 (K,L)eTR

n n
’L}K’LT1+’UL)KT2

2 " n
v v
< KL 2y LK T2 Note that
= i 3

where we have used the Jensen inequality = =
K,LYL K Vi, Lt

Vi T

L,K L,K
N-1
koY loko|(wk+vig)<T Y, |0K|V <T Card(Tr) max|0K]|V,
n=0 (K’L)e‘zg KeTgr KeTr

41 and the bound

1
and by deducing from the mesh properties that max|0K|< =h
KeTgr a
|B(0, R)| _ |B(0, R)|
min |K| ~  ahd
KeTgr

Card(7Tr) <

we have

N

-1
Dk Y loxir|(vkL + k)<
n=0 (K,L)eTR

TV|B(0, R)|
—_—. 25
a%h (25)
Finally, using (24) and (25), the fact that

T? < 2{ max  (F(d,c) - f(d))*+ max (F(d,c)—f(c))z}

uf <c<dsuly uf <c<dsuly

T2 < 2{ max  (f(d) - F(c,d))* +  max (f(c)—F(c,d))Q}

ul <e<d<uly uf <c<d<uly

one finally gets

(Z_:lk » |UK’L|E|:U?<,L{ , max (F(d,c)—f(d))+ max (F(d,c)—f(c))}

¥ <e<d<u™ n cocd<um
n=0 (K,L)e‘fff u'f Se<d<uly up <e<d<ul

+U2,K{ max (f(d)—F(c,d))+ max (f(c)—F(c,d))}]) <W7

uf <c<d<ul uf <e<d<uly

which concludes the proof of the second point of the proposition. m

4.3 Convergence of the finite volume approximate solution

First of all, note that the a priori estimates stated in Proposition 1 only provide (up to a subsequence) weak
convergences for wy . Moreover, due to the nonlinearity of f and g, one needs compactness arguments
to pass to the limit in the nonlinear terms and these arguments have to be compatible with the random
variable. The concept of Young measures is appropriate here and the technique is based on the notion
of narrow convergence of Young measures (or entropy processes), we refer to BALDER [Bal00] but also to
EYMARD-GALLOUET-HERBIN [EGH95].

In this way, taking a sequence of approximate finite volume solution, ur j, it converges (up to a subse-
quence still denoted wr ) in the sense of Young measures to an “entropy process’” denoted by u which
belongs to LQ(Q x @ x (0,1)). Precisely, given a Carathéodory function ¥ : Q x @ x R - R such that
W(.,ur ) is uniformly integrable, one has:

E[[Q xI/(.,uT,k)dxdt] —>E[/C; fOI\II(.,u(.,a))dadmdt].

A proof of this result can be found in [BVW12], Section A.3.2. We recall that a function ¥: QxQ xR - R
is a Carathéodory function if for almost any (w,z,t) € Q x Q the function v — ¥ (w, z,t,v) is continuous and
for all v € R, the function (w,z,t) » ¥(w,z,t,v) is measurable. We also recall that a sequence (1n)ns0 of
functions 1, : 2 x Q — R is said to be uniformly integrable (see [BVW12], Section A.3.2.) if it satisfies the
following properties:

12
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. (%n)ns0 is bounded in L*(Q x Q).

. (¥n)n20 is equi-integrable, that is to say that for any € > 0, there exists § > 0 such that for any
measurable set A of Q x Q satisfying (L' ® P)(A) <6, we have for any n ¢ N,

f hn (w, 2z, t)|dadtdP <
A

(where £**! is the d + 1-dimensional Lebesgue measure).
. For any € > 0 there exists a measurable set K. of Q x Q with (£ ® P)(K.) < oo and such that for

any n € N we have
f n (w, 2, t)|dzdtdP < .
Ke

We recall the following classical result. If K is a subset of @ with finite measure, a sequence of function
bounded in L?(Q2 x K) for some p > 1 is uniformly integrable.

Remark 8 (On the measurability of u) Since ur i is bounded in the Hilbert space N3 (0, T, L2(]Rd)), by
identification one shows that ur p — fol u(., o)da weakly in L*(Q x Q) so that fol u(.,a)da is a predictable
process with values in L*(R?). An interesting point is the measurability of u with respect to all its vari-
ables (w,x,t,). Revisiting the work of PANOV [Pan96] with the o-field Pr @ L(R?), one shows that u is
measurable for the o-field Pr ® L(R?x]0,1[), thus u € Ni(O,T, L*(R%x]0, 1[)) See Appendix A.3.3 p.707
[BVW12].

Remark 9 (L“(O,T; LA (2 x R% x (0, 1)))) regularity of u) Since the sequence of approzimate solution
uT ) 18 bounded in L°°(O,T; L*(Q x ]Rd)) according to Proposition 1, following [BVW12] Remark 2.4 p.667-
668 we show that u € L°°(0,T; LY (Q x R? x (0,1))).

Note that if one is able to show that u is a measure-valued entropy solution of Problem (1) in the sense
of Definition 2, then, using our reduction result stated in Theorem 1, we will be able to conclude that all
the sequence ur x converges in Li,. (€2 x @) to the unique stochastic entropy solution of (1) in the sense of
Definition 1. Since u satisfied the regularities required by Definition 2, it remains to show that u satisfies
the following entropy inequalities:

Vne A, VpeD (R x[0,T)) and P-a.s. in Q

0 < fRU(UO)SO(:C,O)dIEva/Qfol{n(u(.,a))at@(x,t)+<I>(u(.,a))ﬁ(z,t),vzw(x’t)}dadxdt
+f0T jﬂ;d/01n’(U(.,a))g(u(.,a))gp(:c,t)dadde(t)
o [ [Pt et Ddadaat

This is the aim of the next section.

5 Convergence of the scheme

In order to show the convergence of the finite volume scheme (6), we are going to use the following lemma,
which states that any general monotone numerical flux can be split into the sum of a Godunov flux and
a modified Lax-Friedrichs flux (also known as Rusanov flux). More precisely, we have the following result,
whose proof can be found in [CHO0|. We give here a simple proof for the sake of completness.

Lemma 2 Any monotone fluz F (i.e. any numerical flux satisfying Definition 4) can be written as a convex
combination of a Godunov flux and a modified Lax-Friedrichs flux as follows:
For any a,b e R there exists 0(a,b) € [0,1] such that

F(a,b) =0(a,b)F°(a,b) + (1-0(a,b))F5" (a,b),

where FC is a Godunov fluzx (see (29) below for the definition) and F5¥ is a modified Lax-Friedrichs flux
with parameter D = max(F1, F2) satisfying :

FEF (a,b) = M ~D(b-a).

Note that since D is fized independently from a and b, FXF is indeed a fluz-splitting type scheme.

13
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Proof. We give the proof in the case a < b (the case a > b is similar). If a < b, one has F%(a,b) = f(c)
where c € [a,b] is such that f(c¢) =min{f(d), d € [a,b]}. Then, thanks to the fact that F(c,c) = f(c¢) and to
the monotony properties of F, one has (since a < c<b) F(a,b) < F(c,b) < F(c,c) = f(c) = FG(a,b).

From the other hand, the second property of F' (in Definition 4) gives F(a,b) > F(a,a) - Fa(b-a) >
f(a) -D(b-a) and F(a,b) > F(b,b) — Fi(b-a) > f(b) - D(b-a).

Adding this two inequalities leads to F(a,b) > 1(f(a) + f(b)) - D(b—a) = F5¥(a,b). This proves that
F(a,b) is a convex combination between F(a,b) and F5¥ (a,b) and concludes the proof of Lemma 2. m

Note that to show the convergence of the scheme, we will treat in a first step the case where F' is a
Godunov numerical flux. More precisely, the fact that F' is a Godunov numerical flux will be only use to
study the terms B"* — B"* and B"* - B"* (defined below) in the points 2.2 p.18 and 2.3 p.19 of the proof of
Proposition 4. In a second step, we will explain how to treat the general case, i.e when F' is a general mono-
tone numerical flux, by using the decomposition of Lemma 2 to study the terms Bk _ BhF and Bk —Bf’k.

We propose in this section entropy inequalities satisfied by the finite volume approximate solution and
aim to pass to the limit in these formulations in order to show the convergence of the scheme. For technical
reason, one considers a time-continuous approximate solution constructed from w7 and denoted @7 in
the sequel.

5.1 A time-continuous approximation

Set K € T, ne{0,..,N -1} and consider a%(s) the time-continuous stochastic process defined on € x
[nk,(n+1)k) from the discrete unknowns uk by :

—n n s 1 n n n n n n s n
wies) =i [0 ¥ Jowal{vinF(uic,ul) v Fup i e+ [T g@ui)dwie) o (26)
nk |K| Lé./\/'(K) nk
n s—nk n n n n n n s n
SUR — Z |0—K7L|{UK,LF(UKauL) - UL,KF(ULvuK)} + f g(ug )dW (t).
K| penix nk

In this way, we have for almost all w, @ (w,nk) = u% and @% (w, (n+1)k) = u%" and therefore we can now

define a time-continuous approximate solution @7 5 on € x R? x [0,T) by
urk(w,z,t) =g (w,t),weQ,ze K and t € [nk, (n + 1)k]. (27)
Using again the fact that Z lok,L|(vE,r —vE k) = 0 we can rewrite for any K € 7 and n € {0,..., N -1}
LeN (K)

the time-continuous approximate solution @y, on 2 x K x [nk, (n + 1)k] in the following way:

s—nk

ux (s) = ug -

Y ownl{vh n (Fuk,ui) = f(uf)) = of s (F(uf,ui) - f(uk))}
K| Leirin

+ [ gtuicaw (b) (28)

We now estimate the difference between the continuous approximation %7 and the finite volume solution
UT k-

Proposition 3 Let ug € L? (Rd) and T be an admissible mesh in the sense of Definition 3, N € N* and
let k = % € R} satisfying the CFL Condition (19). Let Gt be the time-continuous approzimate solution
defined by (27), and ur i be the finite volume approzimate solution defined by (5) and (6). Then there exists

ceR: depending only on T,Cy, F1, Fo, &,V and ug such that

lur .k — a7k |2L2(Q><Q) <c(h+k).

14
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Proof. Using the equivalent definition (28) of @t k,

llur i — ﬁT,k||2L2(QxQ)

v Nz_:lfmn)kaE[(g(u};)(W(s)—W")

KeT n=0 Ynk

s—nk n n n n n n n n ?
K| d;}( |U|{UK,L(F(UK,UL)_f(ux))—vL,K(F(uL,uK)—f(uK))}) ]dxds

o=K|L
N-1 (n+1)k n n 2
- N {|K|E[(g(uk>(w ~W(s))) ]

+E[(snk Z |UK,L{U}?,L(F(u?ﬁuz)_f(u?())_vz’K(F(uEu}?)_f(u}l())}) ]}ds

‘K| LeN (K)

0
N-1 kZQ‘K|
+ k T E >

LeN(K)

{uhen (P ) = £ ) = i) - ) ) |

We use now Cauchy-Schwarz inequality, the assumptions on the mesh (4), the CFL Condition (10) and then
the first estimate given in Proposition 2 (note that we can apply this Proposition since the more restrictive
CFL Condition (19) is fulfilled):

_ 2
llur k= 47 k|12 (0xq)
2 2
< kCgHUT,k”L?(QxQ)
N-1
+ Z k Z Z k V‘aKHJK LIE| vk o (F(ufk,ur) — f(uk ))2 +or g (F(ur,uk) - f(uk ))2
— |K| s K,L KWL K L,K Ly YK K
n=0 KeT LeN(K)
)
2 2 a“h
< kcg”uT,k”Lz(QxQ) + Clm

where we have used the constant C; given by Proposition 2.

5.2 Entropy inequalities for the approximate solution

In this section, entropy inequalities satisfied by the approximate solution are introduced (Proposition 6),
and will be used in the proof of convergence of the numerical scheme (Theorem 3). In order to obtain
these entropy inequalities, some discrete entropy inequalities satisfied by the approximate solution are first
derived in the following proposition. From now on, we assume that F' is the Godunov flux, namely defined

by :
n[m})] f(s) ifa<b
F(a,b) = HEbaX] f(s) ifazb (29)

For all (a,b) € R? we will denote by s(a,b) € [min(a,b), max(a,b)] a real such that F(a,b) = f(s(a,b)). We
define then the associated entropy numerical flux G by G(a,b) = ®(s(a,b)) for any a,b € R. Note that for
all a € R, G(a,a) = ®(a).

Proposition 4 (Discrete entropy inequalities) Assume that hypotheses Hy to Hg hold and that F is
the Godunov flux defined by (29). Let T be an admissible mesh in the sense of Definition 8, N e N* and let
k= % e R} be the time step. Then P-a.s in Q, for any n € A and for any ¢ € D+(Rd x [O,T)):

—i > [ (i) = (i) ¢ (@, nk)da

n=0 KeTRr

(n+l)k
+ f f S (uy)v(x,t).Vep(z, nk)dodt
K

n=0 KeTp 71k

(n+1)k
"(ui)g(ui)e(x, nk)dedW
z ETfn [ o i) g (ke nk)dadW (1)

1 (n+1)k ” n 2 n
5 [ f n (ux)g” (uk )p(x, nk)dzdt
n=0 KeTp 71k K

RM* (30)

\%

15
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where for any P-measurable set A, E[]IARh’k] -0 as h — 0, with % - 0.

Proof. In order to prove this proposition, we are going to show firstly that Inequality (30) holds for a
convenient R™* and in a second time, we will prove that for any P-measurable set A, E[]l ARh‘k] - 0 as
h — 0. We will in particular use some technics from [EGHO00] and [CHO0] and adapt these technics to our
case.

Let T >0, uo € L*(R?), T be an admissible mesh in the sense of Definition 3, N e N* and k = & ¢ R}. We
assume that k/h — 0 as h — 0, in this way we can suppose that the CFL Condition

ks%
(F1 +F‘2)‘/7

holds for some £ € (0,1). In this manner, the estimates given by Proposition 1 and Proposition 2 hold.
Consider 5 € A and ¢ € D*(R% x [0,T)), thus there exists R > h such that supp ¢ c B(0, R—h) x[0,T). We
also define T = {K € T such that K c B(0,R)} and & = {(K, L) € T2 such that L ¢ N(K) and u% > u}}.

The application of Ito’s formula to the process 4% defined by Equation (26) for some K € 7 and the
function v € R — n(v) € R on the interval [nk, (n + 1)k] yields P-a.s in Q

n(ak ((n+1)k)) = n(ak(nk)) - Il /k n'(arkt) Y loxcl{vk L F(uk,ul) - vk F(ul,uf) fdt
n K)
Dk

LeN(
[T @raoaiaw @ 3 [ @ra)e (o (3D

k

1
Let us multiply Equation (31) by |K|p, where ¢k = m f p(z,nk)dz, and sum for all K € Tr and
K
n € {0,...,N —1}. One gets P-a.s in Q

> [nuE) - nui)] IKlek = Y Y f n'(urx®) Y loxcl{vi o F(uk,ur) - v g F(ul, uy) bdtpi
n=0 KeTg n=0 KeTg LeN (K)
2 n [ @ra®)gui)dw (1)K gk
n=0 KeTR
N-1

1 (n+1)k "y — 2 n n
S2 > [ ra)g (WKl
n=0 KeTg 7"k

This can be written as A™* = —-B"F + CM* 4 DMF where

N-1
ARt = > [nui™) = n(ui)] IKlek
n=0 KeTp
h,k & (n+Dk !/~ n n n n n n n
B = Z [ n (a7 ,x(t)) Z |0—K7L|{UK,LF(UK:UL)_UL,KF(U‘LvuK)}dtSDK
n=0 KeTp 7" LeN (K)
h,k = (n+Dk n n
=y [ s ®)g(uio)dw (@)K
n=0 KeTp
N-1

Let us analyze separately these terms.
1. Study of A™*: we note that —A™* is equal to the first left hand side term of Inequality (30).

2. Study of B"*: we decompose

Bhr=> v _[ — [ n'(arx®) Y loxpl{vikoiF(uk,ul) - vi x F(ug, ugx) }o(z,nk)dzdt
n=0 KeTp Jnk K| Jx LeN(K)

in the following way

h,k h,k Hh.k h,k h,k Hh,k h,k h,k
BMF = gtk _ gk phk _ phiky ghik_ gk gk

16



Hh.k = (n+1)k 1 n n n n n n
B™" = Z f 77 (U Z |‘7K,L|{UK,LF(UK7U«L) —UL,KF(“L,UK)}@(xank)dxdt

n=0 KeTp 71k |K| LeN (K)
~h.k = (n+1)k 1 n n n n n n
B = Z f — Z \JK,L|{UK,LG(UK»UL) _UL,KG(ULyuK)}SO(«’Evnk)dxdt
n=0 KeTp v 1k |K| JK LeN(K)
hoke N-1 (n+l)k "
B" = f f D (uk)v(x,t).Vop(z,nk)dzdt
n=0 K nk K

2.1 Let us first prove that for any measurable set A, E[14(B"* - B"¥)] - h 0
For almost all w, any K € T and any n € {0, ..., N — 1}, there exists (i (w) € R such that

_ N-1 (n+l)k 1 n
gy [ o [ @) - @)
n=0 KeTr Y™ K

k |K
x> okol{vi L F(uk,ur) - vr g F(ur, uk) bo(x, nk)dzdt
LeN (K)
N-1 (n+l)k 1 "o "
=Y oy [ [ G ) - i)
n=0 KeTg 7"k K| JKi
x o loxcl{vk L F(uk,ul) - vi x F(ul, uk) fo(x, nk)dzdt
LEN(K)
T +T

where

N-1 (n+)k 1 p
Z fk |K| (CK) |K\ <p(ac nk)dxdt
0 KeTg I

n=

x ( > loxl{vie L (Fuk,ul) = f(uk)) —vr, s (F(ul, uf) - f(u}?))})

LeN (K)
and
hk N-1 (n+l)k 1 "o n
mh D 3 [ e - W)

X Z |UK,L|{U%,LF(’U'7}L(7UTLL) - UZ,KF(UTLL:UZ)}SO(va”k)dﬁdt
LeN (K)

o Let A be a measurable set, we first study E[14T7"*].
Note that here the assumption k/h — 0 as h — 0 is crucial. Using Cauchy-Schwarz inequality, As-
sumption (4) on the mesh and the first estimate of Proposition 2, we get

hal-01061019, version 1 - 4 Sep 2014

N-1 (n+1)k 1

>y /

n=0 KeTp 71k |K|

"(CK) <p(ac nk)dxdt

|BlLaT )| = ‘E[m | |

( 5 |aK,L|{v?<,L<F<u?<,uz>f(uz))vz,K(sz,u?af(u%))})]

LeN (K)

N- 2
k
<||77"Hoo||30||oo2 > |K|( > IUK,LI(U%,LMZK))

n=0 KeTg LeN(K)

XE[ Z ‘0K7L|{U?(7L(F(U7IL(7U’Z)—f(U%))Q‘*’UZ’K(F(Uz,U}?)—f(u";;'))Q}:I

LeN (K)
” N-1 k2
<nleoleles > > |K|V|3K\
n=0 KeTr

xE[ Z JK7L|{U?(7L(F(U}L(71/LI)—f(u?())QJerK(F(uﬂu?()—f(u’}())z}:l

LeN(K)

" k
<Ol ol oV
- 0,

h—0

where C is the constant of the first point of Proposition 2.
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e Let us now estimate E[14T0"].
Let C be a constant depending only on ¢,n,Cy, T, uo, &, F1, F> whose value may change from one line
to another. Using Cauchy-Schwarz inequality, Assumption (4) on the mesh and then Proposition 2

(Prar )’

:(E[ILA Nf > f(nﬂ)k

n=0 KeTg 7"k

<

LeN (K)

n=0 KeTr

N-1 (n+1)k
<BE[ Y T fnk

- 9 -

N-1 (n+1)k
By ¥ [ W) -Wk) Y lowwl{vinFluie,ut) - o Fui, i)} | dt
| n=0 KeTp 77k |K| LeN (K) ]

2

2 2 2
<lelsln”leCq ”uT,k”LQ(QxQ)

[ N-1 (n+1)k 2 1
<E[ 3 f W) -W(nk)) S loxol{vk o Fus,ul) - vp o F(uf,ui)} | dt
| n=0 KeTp 77k |K| LeN (K) |

=

%fK{n"(cz)g(u?{)(w(t)—W(nk))}
lorc.H{vk L P (uie, uf) o e P (ut, uie) (e, nk)dmdt])

_[K [Tan” (C)g(uk)e(z, nk)|2d:cdt:|

<C f Z \UK,L|{UK,LF(UK7UL) - 'UL,KF(ULyuK)} dt
KeTg Ynk LeN (K)

N-1 2
3> kE( 5 |0K,L|{vz,L(F(u;z,uz)—f(u%))—vz,xw(uz,u’&)—f(u%))})

n=0 KeTg |K‘ LeN (K)

N-1 k2

D> m(

n=0 KeTr

Z |0'K,L|('U?<,L + 'UZ,K))
LeN(K)

E[ > )|aK,L{v;z,L(F(u;;,uZ)—f(u?a)z+vz,K(F(uz,u?<)—f(u?<>)2}]

k
CV—?Zh
- 0.
h—0

2.2 Let us now study Bk _ B™* . we show that B"* — B"*

First we notice that by (8) we have

>, (Vi —vf ) ®(uk) =
LeN (K)

> 0 almost surely.
> (ko -vik)f(uk)=0.
LeN (K)

Recall that for any K € T, F(uk,uk) = f(uk) and G(ufk,uk) = ®(uk) and that ® is defined by ®(a) =
f n'(t)f'(t)dt for a € R. Hence we can rewrite B™* — B"* in the following way :
0

BB Y S S (vl (PG uR) - Fi0) - (Gluic,uh) - B(ui)]

=T (32)
n=0 KeTr |K‘ LeN(K)

o[ (Pl w) = S () = (G, ) = @] [ ol nb)d
Let K,L €T and suppose that u < u7 (the case uf < uk is similar).

We first determine the sign of n' (u ) (F (v, ul) - f(uk)) - (G(uk,u})-®(uk)). Using the fact that we are
in the particular case where F' is the Godunov numerical flux, we know that there exists s(ux,u7) € [uk,uT ]

18
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such that F(uf,ul) = f(s(uk,ul)) = te[gil}tn]f(t)‘ In this way
K’7L

1 (i) (F(ufe,ur) = fuk)) = (G(uk,ul) - P(uk))
1 (i) (f (s(uf, ui)) = f(uk)) = (D(s(uk, uf)) - P(uk))

L pm ia [F paw a

n
UK

L w0 i) ' ()

UK

s(uf,uf) " n n 1y n ’ n n
/. FON" (0t + f(s(ufe, ul)) {n' (wie) =’ (sl )}

Vv

s(ujeul) n n " n n reom ’ n n
/. F(sule,u )" (Bt + F(s (i, ul)) {0 (ue) = (s(ule, up))}
UK
> 0.
Using the same technics, we show that n'(uf%)(F(uf,ufk) - f(uk)) - (G(u},uk) - ®(u%)) < 0. Indeed,

since uf > uf, there exists s(u},uk) € [uk,ur] such that F(uf,uf%) = f(s(uf,uk)) = [max ]f(t) and
te u;L( 2

we have

0 (i) (F(ug,ui) = f(ui)) = (G(ug, uk) - ®(uk))
1 (ui) (f(s(uf, ufc) = fuk)) = (®(s(uk,ur)) - P(uk))

f:(uzﬁu}m{) F @) (uk) =n'(t))dt

f(t)n"(t)dt + f(s(u,uie)) {0 (ukc) =1’ (s(ui, ui )}

IN

/S(HL»“K)
u

F(s(ur,upe))n” (@)t + f(s(ui, uic)) {0 (uic) =n'(s(ui, uk))}

/N

Finally we get

vie, [0 (uie) (F(uk, ul) - f(uk)) - (G(ufe,up) - P(uk))]
~of k[0 (uic ) (F(ul, ui) = fuk)) = (G(ug,uk) - ®(ufk))] >0

We deduce that we have for almost all w € Q, B - B"F > 0.

2.3 Let us now prove that for any measurable set A we have E[14(B"* - Bfk)] o 0.

To begin with, we split B"* and Bf’k into the sum of two terms. Using again the fact that

> orL|(vi,L - v k) ®(uk) =0,
LeN (K)

we can rewrite

= nZ:O K;R K| Le./\ZfEK) ‘UK,LHU?(,L(G(U?(»UQ) - ®(uk)) - v k(Gul,uk) - <I>(u7;<))} ‘/K o(z,nk)dx

in the following way B™* = T/"* - T/"*  where

=3 3 |K||UKL|{UKL(G(uKauL) P(uk)) - vi,x(G(uL, uk) - @(uK))}f ¢ (x,nk)dx

n=0 (K,L)eTl

and

RPN |L||aKL|{uKL(G(uK,uL> (uf)) - vf. 1 (Gl uic) - ©(up))} [ (e, nk)da.
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Similarly,
(n+l)k

f S (uk)v(x,t). Vo (z, nk)dxdt
k K

(n+1)k

3
H
5
\‘
:\

/I; S (uf ) div[v(z, t)p(z,nk)]dzdt

Yy v fn(”“)k fUKL@(u;)@(x,t).nK,Lgo(x,nk)dy(x)dt

k

N-1 (n+1)k
- f / —o(z,nk)®(ul)v(z,t).nk,rdy(z)dt
OK,L

n=0 (K,L)exR 7"k
_ Tlh,k B Th,k’
where
h,k R (n+)k n n n n n n no\ -
T = _[ / {'UK,LG(UK/UL) ~vp, kG(uL, uk) - ‘I’(UK)U(%t)ﬂK,L}w(ﬂC,n]f)d’Y(l’)dt
n=0 (K,LyexR 7"k OK.L
and

= (n+1)k n n n n n n ny —
hlc Z Z [k faxL {UK’LG(uK,uL)7vL,KG(uL,uK)7@(uL)v(x,t).nK7L}<p(:r,nk)d7(:c)dt.
: L E)

Now our aim is to estimate |T}"* — T7"*| and |T/"* — T/"*|. To do this, we first note that these quantities
can be rewritten in the following way :

N-1
T -T2 Y S Kool {vk o (Gluful) - $(u)) — v}k (Gl uk) - B(ufe))

n=0 (K,L)eTh
1 1
{|K|/ @(y,nk)dy - mf 90(967”]?)517(43)}
3 OK,L

N-1
5> k[ {vka(Gluicud) - ©(ui) - of s (Gul uic) - (i) po(a nk)d (o)
n=0 (K, )egg 9K,L
N-1 (n+1)k
- [ [ ok Gluk,u) ~vEcGlut uf) - ©(uR)5 (@, 5) e 1 fip(w, k) dy(2)ds
n=0 (K,L)eTR nk 9K,L
N-1

{ul(' [, eyt~ [ KLgo(x,nkmw(x)}

N-1 n (n+l)k R n n
£y oi) [ [ [ )ni - (ko - vEa0)] e(ank)da (2)ds
n=0 (K ‘IR nk OK,L

and we also have

N-1
-T2 Y Y Kokl {vk L (Gluk,ul) - ®(uf)) - of x (G(ul, ufc) = (ul))}
n=0 (K,L)eTh

{@' S ety - [ KLsO(w,nk)dW(x)}

+Z > ‘P(uL)f MLKL[@(x,s),nK’L7(v;Lwg,K)]@(x,nk)dy(x)ds.

n=0 (K,L)eTR
In order to control |[T7"* — T/"*| and |TJ"* - T/"*|, we need to bound the following quantities:

G(u,ur) - ®(uk), G(uk,ur) - (ur),
G(u7£7u7;() - (I)(’LL%), G(U’Z’u}?) - q’(”ﬁ%

1 1
M/ W(I7nk)d7(x)_M/;{tp(y,nk)d%

and Z > <I>(uK)f o LKL[’D'(ZE,S)V'RK,L—(UZ"L—UZ,K)]QD(JS,nk)d’Y(QJ)dS.

n=0 (K,L)eTl
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e Let us begin with G(u,u?) - ®(uf), and then similar quantities. Set (K,L) € T2, we then have
u >u7 which implies that f(s(uk,u7)) = max f(¢) and hence
up up

G(uk,ur) - ®(uk) = ®(s(uk,uL)) - P(uk)

s(ufe,ul) , ,
- /. 0 (3)f (s)ds.
UK

s(u'f,ul)
First case : / e 7' (t) f'(t)dt > 0.
RS
Using an integration by parts formula, we get with d such that f(d) = » min) ]f(t):
te[s u?(,uz ,u}L(

L s mas=- [T i OU - @l O - (@1, )

<’ (ui)[f (ue) = F(d)] = ' (s(uie, up)) [ f (s(uk, uz)) - f(d)]
<n'lloolf (uic) = f(DI+ [0 o] £ (s (e, ut)) = f ()]
<20l £ (s(uic, L)) - f(d)]

<2[n'fle , max IF(d,C)—F(d,d)L

7 <e<d<u

since f(s(uk,ur)) = N maxy f(t) = max f(t) F(d,s(uf,ur)).

[s( n ’ 7L
s(uks )
Second case : f et n'(t)f (t)dt < 0.
s

Similarly we have:

/ s = - fun P OUO - s+ [ (OO - F(sCuec)) R, o

s(ul,ul)
> 1 (ufe) [ f (k) = f(s(ufe,u))]
> =0 oo F (uie, uic) = F(ujc, s(ug, ur))|
> =l max [|F(d,c)- f(d)

u”t <e<d<u’
uf <e<ds

0= omax T = Fuks(uic ur)).

te[s(uf uf),ul
We deduce that in both cases we have

since f(s(ufk,u?)) =

[n. r

|G (uk, uz) = (ug)| < 2’ \Ioo o max  |F(d,c) - f(d)] (33)

<d<uy

Similarly, we can show using the same technics that for any (K, L) € <k

(GO ) ~ P <2l , i |F (e )~ £(d) (34)
G e, i) - B(ui)] <20 oo mg}gan(d &)~ () (35)
(GO} ) ~ R < 2|, e |F(e,d) = £(C)] (36)

e We are now going to estimate or il / o(z,nk)dy(x) - Il / p(y,nk)dy.
OK,L
Using the regularity of ¢ we get the followmg bound:
1

lox, Ll

2] Ve (37)

1
p(a,nk)dy(2) - = [ o(ynk)dy| <
OK,L |K| JK

e Let us now bound Z > d(uk) f f [ﬁ(m,s).nK,L - (VK. —UZ,K)]go(a:,nk:)d'y(ﬂc)ds.
OK,L

n=0 (K,L)eTl
First note that this term is equal to

Z S o) /(n+1)k /GK L [ﬁ /Miml)k /GK ) {(z,s) —T)(i,t)},nK,Ld'y(:E)dt:I o(z,nk)dy(x)ds,

n=0 (K,L)eTR

and thanks to the regularity of ¥, we deduce that there exists a constant c¢(v) only depending on o
such that

<c(®)(k +h). (38)

fmiml)k /UK,L {ﬁ(% s) - ﬁ(f,t)}.nKyLdy(j)dt

1
klox,L|
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Hence, we have since div[4(z,s)] =0 ¥(z,s) e R? x [0,T]

[ (B s micn - (v - v ) mk)dy(x)ds
:ﬁ2n+1)k LK,L (ﬁ faK,L ﬁi?ﬂrl)k{/ﬁ(x’s)7,{)(j’t)}.nK,Ld'Y($))[QD(-'L’,TLIC)7@($U,nk)]d7(x)d87

and we deduce

(n+1)k
fk f {i(z,8).nx,L - (Vi L V7 1) bo(x, nk)dy(z)ds
n OK,L

<e(®)|plwh’klox, L

In this way, there exists a constant C' depending only on 9, ¢, uo,T,Cy,&,n and f, whose value may
change from one line to another such that

N-1 (n+1)k
> ¥ o) [ [ [p@s)ne - vk - o)) oo nk)d (2)ds
n OK,L

n=0 (K,L)eTR

N-1
Ch? Yk > Y loxol®uk)l

n=0 KeTr LeN(K)

IN

N-1
Ch* Y ¥ koK |uk]

n=0 KeTg

C N-1 n
ShY Y Kk

n=0 KeTR

IN

IN

IN

Chllur k|1 (B0, Ryx(0,7))
< Ch (39)

Similary we get for some constant C depending only on ¥, ¢, uo,T,Cy,&,n and f, whose value may
change from one line to another such that

N-1

Z Z (I)(UZ) L;m—l)k [;K . [i)’(:p,s),nK,L - (1)%7[‘ _UZ,K)] p(z,nk)dy(x)ds

n=0 (K,L)eTR

Ch (40)

IN

We are now ready to compare B™* to B{L’k. We first recall that Bh’k—Bf’k = T{L’k—Tf’k—(T;’k—TQh’k).
Using (33),(34), (37) and (39) we get for some constant C' depending only on 9, ¢, uo, T, Cy, &, n, f and
whose value may change from one line to another

B N-1
it -Tt<e Y, Y klaK,L\h(v}z,L L max  [F(d,c) - f(d)|+ 0Lk  max  [F(c,d) —f(d)l)
uL\c\ \uK uL\c\ \uK

n=0 (K,L)exR

+ Ch.

And using (35), (36), (37) and (40) , we get similarly for some constant C' depending only on
0, p,u0,T,Cq,a,n, f and whose value may change from one line to another

Fh,k h,k
|T’27 _T2,

N-1
<y ¥ k|aK,L|h(v?<,L Jmax  [F(dyc) - f(e)| +F s max IF(c,d)—f(C)l)

n n n
n=0 (K,L)e’Iﬁ uf <c<d<uly T Sesdsufe

+Ch

Combining these two inequalities and using Proposition 2, we get for some constant C' depending only
on v, ¢, uo, T,Cy,a,n, f and whose value may change from one line to another for almost all w

N-1
|Bh,k _ Bfk| <C Z Z k|aK7L|h(v§7L{ max |F(d,c) - f(d)] + - ma;iu |F(d,c)- f(d)|}
K L

" <e<dg <cgd<ull
n=0 (K, D)exR uf <c<ds<u c<dsufy

+ UZ!K{ max |F(c¢,d) - f(d)|+ max |F(c,d)- f(c)|}) +Ch
uz Scédéu}"( u’chsdgu’;(

< ChY2,

Therefore we have that for any measurable set A, E[ILA(Bh’k - Bi’k)] o 0.
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3. Study of C"*: we decompose C"* in the following way
Ok _ ook _ Gk Gk

where

_ N-1 (n+k n n
M= ey [ i) g(uk e nk)dw (£)da. (41)
KeTg n=0 K Jnk
We are now going to prove the convergence of E[IIA(C’WC - Ch’k)] towards 0 as h goes to 0.

‘E[lA(éh’k -t ’“)]‘

[mmzo Lo [ (aT,k<t>>—n<uK)Jg<uK)so<w7nk)dW(t)dw]

" [,%R 3o [ W ) - @ latui) el - (. 0) dW(t)dx]

Nt (n+1)k
A Y i o U?( u?( ., W s
B Kezmnzzofxl fnk [ (7 (8)) = ' (uie) 19 (u )op (2, £)dW (1) ]

h,k h.k
=577 + 55",

Using successively Cauchy-Schwarz inequality on 2 x B(0, R), Itd isometry and Proposition 1 one gets

hk _
Sy =

E[K;R DN RTY {n’(aT,k(t))—n’(u;w}g(u;z){so(x,nk)—so(x,t)}dvv(t)dx]

1/2

<VIB(0,R)]| f [KZ; /K E [( /minﬂ)k {n'(ur x(t)) = 0" (ufk) fg(uk){(z,nk) - w(ﬂr,t)}dW(t)) ] dw]

n=0

=V |B(0»R il

n=0

1/2
= [ [{n%um(t))n'(u&)}QgQ(u;w{so(x,nk)w(x,t>}2]dtdx]

, N-1 n 1/2
<VRVIBO.BRC,lledl=linl= 3 k Py |K|E[(ui)*])
<VIVIB(O, B)2C, lptllee 7l T 5 ol 2ty = 0.

Note that here Assumption Hg on the function g is important:

2

(s37) =

gMRlA [ {mw,k(t))—n<uK)}g<uK)so(x,t)dW<t>dx]

2

- |E[1A S 0 @r0 =o' rbatur oo 0w (0)ds]

T 2
cio.m) [ ([ s -t olaturetanm o) |
BOR)N [ [ B[ ) 0 )} e ) e
B(0,R)
<IBQO, R)lleleln” |9l ar k- ur i l720xq) =, 0
using Proposition 3. In this way,

E[14(C"" = C"™")] > 0 as h > 0.

4. Study of D™*: we decompose D™* in the following way
Dk — phok _ phik | ik

where

DhE = lN ek " (ul U )o(x,nk)dzdt. 42
Qg;R/ [ i) g’ (ko mb) e (42)
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We are now going to prove the convergence of E[ILA(f?h’k - Dh’k)] towards 0 as h goes to 0

|E[1A(Dh,k B Dh,k)]‘ %E |:KZ7; Z; fK fn;nﬁ)k 1a [77"(“?{) - n"(u'r,k(t))]g2(u?{)tp(x,nk)dxdt:|

"

IN

1, 2 _
§||9||oo”90||°° 1n™ Nleo 78 = ur i HLl(QxB(O,R)x(O,T))

IN

nr ‘

c 2 _
lalicelielloe ™ ool @7 s~ ur

— 0 as h - 0 using Proposition 3.

L2(QxQ)

In this way,
E[14(D"* - D"*)] > 0 as h > 0.

Since P a.s in , AM* = —BMF 4 Ok 4 DVE ) we get
_Ahk B{L,k L Ok Pk (Bh,lc _ Bh,k) N (Bh,k _ Bh,k) + (Bh,k _ B{Lk) N (éh,k 3 Ch,k) + (Dh,k _ Dh,k)
5 (Bh,k 3 Bh,k) + (Bh,k 3 B{Lk) . (éhk _ Ch,k) N (Dh,k _Dh,k).

Indeed, we have seen that we have almost surely in Q B™* - B™* <0. In this way

_i > ﬁ((n(UTIL(H)_W(UT}l{))tp(m,TLk)d:C

n=0 KeTp

N1 (n+1)k
PPy f fKFn(“?f)ﬁ'Vfc@(l’, nk)dxdt
=0 KeTg J™

e k
N-1 (n+1)k oo .

" fn(uK)g(uK)go(x,nk)dxdW(t)
n=0 KeTp 71k K

1 = (n+1)k 7" n 2 n
x> [ [ g (wi)e(e, nk)dedt
2 n=0 KeTp 7"k K
> RME
which is exactly Inequality (30), where

Rh,k _ (Bh,k _ Bh,k) 4 (Bh,k _ B;l,k) + (Cyh,k _ Ch,k) + (Dh,k _ Dh,k). (43)
It remains to show that for any P-measurable set A, E[]IARh’k] - 0as h—0.

To do this, we just have to gather the results obtained previously, namely E[ILA((Bf’k—Bh’k)], E[ILA(Bh’k -
B"F)], E[1a(C"* —=C"*)] and E[14(D"™* - D"*)] go to 0 as h goes to 0. m

Proposition 5 Proposition 4 holds for a general montone flux F, with the same assumptions.

Proof. Most of the proof is exactly the same as the proof of Proposition 4, since we use only the fact
that F' is a monotone flux, except to show the points 2.2 p.18 and 2.3 p.19, where we truly exploit the fact
that F' was the Godunov numerical flux. In order to adapt these two points of the proof, we use then the
decomposition given by Lemma 2:

F(a,b) = 0(a,b)F(a,b) + (1 -0(a,b))F5" (a,b).

First we have to give a definition of the entropy numerical flux GG, which uses the above decomposition :
for any a,be R
G(a,b) = 0(a,b)G(a,b) + (1-6(a,b))GD" (a,b),

D(a) + D(b)
20 Dby - n(a).
e In order to show that B®* — B™* > 0 almost surely, we split the sum into two terms:

Bk _ ghk (44)

& k n n n Iy n G/ n n n G/ n n n

= Z 7 Z G(UK,UL){UK,L[W (e )(F7 (uk,ur) = f(uk)) = (G (uk, ur) = ‘I’(UK))]
n=0 KeTg |K‘ el
o=K|L

—of e’ (i) (P (uf uf) = £ (uf) = (6% (u ui) ~ @(uie)]} [ @ nk)da

where G (a,b) = ®(s(a,b)) and G5 (a,b) =

N-1 k

+ _OKZT Il Zgj (1—G(u’k,u’i)){v}?,L[n’(u’é)(FéF(u%uZ)—f(u}?))—(GéF(u%,u’i)—é(u}?))]
K
—of g [0 (i) (FBT (uf,ufe) - f(uk)) = (G (uf,ufc) - @(u’,;))]} fK o(z,nk)dz. (45)
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In order to treat the first sum we just have to apply the same argument as in the proof of the point 2.2
p-18, whereas the second term can be dealt by using similar argument to the one used in the proof of
Proposition 4 of [BCG|, since we recall that the modified Lax-Friedrichs scheme belongs to the family
of flux-splitting schemes.

e In order to show that for any measurable set A we have E[]IA(Bh’k - B?k)] o 0, we split once again

the sum into two parts:

B"*F - Bt = > o fk K] Jx > 9(”K>uL)|U‘{vK,LGG(uKauL)_vL,KGG(uL:UK)}@(mvnk)dxdt
n=0 KeTr ¥ " U—Ef(ﬁ
N-1 (n+1)k 1
+ f 7f O(ufk,ur)P(ug)v(x,t).Vop(z,nk)dxdt
nZ:%) K;’R nk Card(N(K) Jk U_%TL
sy > [ o [ -0k up)lel{vin GB (uk, uh) - of, kGBT (uf,uio) f (o, k) dadt
n=0 KeTp Jnk ‘K| K gegy
) o=K|L
N-1 (n+1)k 1
+ - 1= 0™, u ) D (U)o (2, £).Vap(z, nk)dzdt.
L2 [ Graway Je B (1 i v @(ui)o(e.0)- Vol nk)da

o=K|L

To conclude, we deal with the first two terms by applying the same argument as in the proof of the point
2.2 p.18, whereas the last two term can be dealt by using similar argument to the one used in the proof of
Proposition 4 of [BCG|. m

The following proposition investigates the entropy inequalities which are satisfied by the approximate solu-
tion wr .

Proposition 6 (Continuous entropy inequality on the discrete solution) Assume that hypotheses
Hy to Hg hold. Let T be an admissible mesh in the sense of Definition 8, N € N* and let k = % e R} be the

time step. Then, P-a.s. in , for any n e A and for any ¢ € D* (Rd x [O,T)):
fRd n(uo)cp(:c,O)dx+an(uTyk)npt(m,t)da;dtJr/Q@(ur,k)f),vzgp(x,t)dxdt

T ! 1 "
v L rietur et dedW (1) + 5 [ o (ur g (ur (e, Ddede
> R"* (46)

where for any P-measurable set A, E[ILAIN%h’k] -0 as h — 0 with % - 0.

Proof. The proof of this proposition will be separate in two steps: in a first time we will show that
Inequality (46) holds for a convenient R™* and in a second time, we will prove that for any P-measurable
set A, E[ILAIN%h’k] —-0as h—0.

Let T > 0, ug € L*(R%), T be an admissible mesh in the sense of Definition 3, N € N* and k = % € R;.We
assume that k/h — 0 as h — 0, in this way we can suppose that the CFL Condition

. (1-9a’h
h (Fl + F’z)‘/7

holds for some £ € (0,1). In this manner, the estimates given by Proposition 1 and Proposition 2 hold.
Consider 17 € A and ¢ € D*(R? x [0,T')), thus there exists R > h such that suppy c B(0, R - h) x [0, T[. We
also define T = {K € T such that K c B(0,R)}.

Step 1: Let us show that Inequality (46) holds for a convenient R

Note that the first term of Inequality (30) given by Proposition 4 can be rewritten in the following way:

XS ) - nio] [ e nkde

n=0 KeTr

:fkTfRdn(uT,k)sot(x,t—k)dxdt+ Z f}(n(u%)w(aj,o)dﬁ

KeTr

Indeed, thanks to the discrete integration by part formula

N N
Z an(bn —bn-1) = an+1bn — aobo — Z bn(an+1 — an)
n=1 n=0
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and by using the fact that for all z in K and for k small enough, ¢(z, Nk) = p(z, (N - 1)k) =0 we get

N-1

fkTfmdn(urk)cpt(x,t—k:)dxdt: Z Z [Kn(u?g)[go(x,nk)—@(m,(n—l)k)]dx

n=1 KeTr

I AU R EER B

+ ¥ [ nde(a (N - 1Dk) - n(uf)e(e,0)de
KeTgr

I U SEUIC EERBIE

- u% xz,0)dz.
P RICOECD

By denoting

h,k
¢y

T
[ [ rigur e, daaw @)
1 4
DI = 5 [ ur g (), dede
one gets from Inequality (30), Inequality (46) with RM* defined by

RME = Rh’k+fdn(uo)<p(w70)d$— > f”(“%)%p(”/’vo)d“f
R KeTp YK

T
+an(u7—’k)<pt(m,t)da:dtffk fRd n(urk)ee(z, t — k)dxdt

N-1 (n+1)k
+/ D (ur k). Vep(z, t)dedt— Y > f f D (ug )0.Vaop(z,nk)dzdt
Q n=0 KeTp ¥k K

h,k = (n+1)k Iron n
+C7" - E: E: n (uk)g(uk )p(z,nk)dW (t)dx
K k
KeTr n=0 n

h,k 1N_1 (n+1)k " n 2 n
DSy n [ [ uiog® (uic) e (@, nk)dadt.

n=0 KeTg Y1k

where R™* is given by (43) in the proof of the previous proposition.

Step 2: Let us show that for any P-measurable set A, E[ILARh’k] —-0ash—0.
Thanks to Proposition 4, we know that for any P-measurable set A, E[]IAR’“’“] — 0 as h - 0. Then it
remains to study the convergence of the following quantities:

E(14 (/md ﬂ(uo)‘ﬁ(:v,O)dm—KZ; _/K7)(ui;)()<p(ax7O)dgz:)]7

E :ILA (/Q n(urk)pe(z, t)dzdt - /kT ./Rd n(ur k) ee(z, t - k:)dmdt)] ,

N-1

Ella (/C;(I)(U“T'k)ﬁ(:rvt)~vx@($,t)dxdt— Z Z fn:ml)kfKq;(u?()f)(x,t).Vx<p(:c,nk:)dﬂcdt):|,

n=0 KeTr

E ILA(C{”I“ - K; Z% fK fnZM)k n'(u%)g(u'z?)w(w,nk)dW(t)dw)] = B[1a(C}F - C")]

ar 1NE (n+1)k ,omN 2, n Rk Ahik
Blalpt* -2 % ¥ [T [ (kg (wi)e(a nkydedt || = E[1a(D} - D)),

where C"* and D"* have been defined respectively by (41) and (42) in the proof of the previous Proposi-
tion. Let us analyze separately the convergence of these terms as h — 0.

1. Convergence of £ [ﬂA (ﬁgd n(wo)e(z,0)dz - KZ; fKn(u?()go(x,O)dx)]

Since ug € L, (R%), one shows that this term tends to 0 as h — 0.
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T
2. Convergence of F []IA (f n(ur k)i (z, t)dzdt — f [d n(ur k) ee(z, t - k)dxdt)]
Q k R

T
| [ nur e dudt— [ [ ntur)ede,t - kdvd
Q k R4
T T
<[ [ ntur e ndedt = [ [ n(ura)ede,t - kydedd
k R4 k RA
T
s [ n(ur oo, tydudt— [ [ n(urede,t)dud
Q k R4

< mlleollpet oo lsuppeplk + [l co [ ¢ oo B(O, R)|E.

T
We deduce easily that E [ILA ([ n(ur k) (z, t)dedt - [ [d n(ur k) pe(z, t - k)dxdt)] o 0.
Q kE JR —

N-1 (n+1)k
3. Convergence ofE[lA (f P(ur r)0.Vop(z, t)dadt — > f f B (uk)o(z,t).Vap(z, nk)dmdt)]
Q n=0 KeTp ¥ "k K

‘E Ta ([Q @(UT,k)’U(x,t)-VzSO(fE,t)d:Cdt—:gK;R /nlinﬂ)k/I;<I>(u7;<)z7(x,t).vz<p(z,nk)dxdt)]‘
Z::K;R []1,4 /n:ml)k/}(@(u%)ﬁ(w,t).[vxtp(m,t)—wa(x,nk)]dxdt]

T
<P o[ Vaipl VE U / |uT,k|dxdt]
o JB(,R)

<@ oo [Vt o
- 0.

h—0

4. Convergence of E[]IA(C{L"’c - C’hk)]
Using Cauchy-Schwarz inequality on  x B(0, R) and It6 isometry one gets

‘E[lA(Ch ok Ch”“)]‘

E[u sy [/ inmkn'(U%)g(U%){w(%nk)s@(rr,t)}dW(t)dw]

N-1 n+l)k 2 12
< Y VB, R)( 5 foe|( " s et - e o) ]dx)
n=0 KeTgr n
N-1 n+1 2 1/2
- Y VBOR) ( [ [(n () () (i, k) — o, t)}) ]dtdm)
n=0 KeTgr

IN

VINIBO, BIC ot e S (3 IKIE[(3)]) "
n=0 KeTr
2
ViVIBO, R)ICyllpellee] 'l Te" % ol 2 gty = 0.

/N

where we have used Proposition 1 to conclude.
5. Convergence of E[ILA(D]f”C B ﬁhk)]

‘E[]IA(th Dh,k)]‘ ) E[Nz—l 5 [<n+1> flAn"(uK)g (ui) [ (@, nk) - p(z, t)]dxdt]

n=0 KeTp 71k

/N

1 7 2
Skl lleellglicelloell-T1B(0, R)| - 0.

To summarize, we proved in this second step that E[ILAI:Zh’k] — 0 as h — 0, which concludes the proof of
the proposition. m

5.3 Proof of the convergence

And we prove now the convergence of the finite volume approximation ur  to the stochastic entropy solution
of Problem (1).
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Theorem 3 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to Hg
hold. Let T be an admissible mesh in the sense of Definition 3, N € N*, let k = % e R} be the time step.
Let ur i be the finite volume approzimation defined by (6). Then ur converges in LY (Q x Q) for any

loc

1 < p <2 to the unique stochastic entropy solution of (1) in the sense of Definition 1 as h — 0 with % - 0.
We recall that L? (Q x Q) means locally in space.

loc

Proof. Let 7 be an admissible mesh in the sense of Definition 3, N € N* and let k = % € R} be the time
step such that k/h — 0 as h - 0. In this way we can suppose that the CFL Condition

< (1-9a’h
(B + BV

holds for some £ € (0,1). In this manner, the estimates given by Proposition 1 and Proposition 2 hold.
Consider A a P-measurable set, n € A, ¢ € D*(R? x [0,T)), thus there exists R > h such that suppy c
B(0,R-h) x[0,T). We also define Tr = { K € T such that K ¢ B(0,R)}.

Let us multiply Inequality (46) by 14 and take the expectation. This yields:

E[]IA fRd n(uo)cp(m,O)dac] +E|:]1A/(;)7](’11/7’7k)()0t((1),t)d$dt:| +E[]1A /(;@(uT,k)ﬁ(x,t).ngp(x,t)dxdt]

+E[]1A /(;T /H;d n’(uTyk)g(uT,k)ga(m,t)dde(t)] + éE[]lA fQn//(uT,k)QQ(uT,k)SD(%t)dirdt]
s B[R, (47)

To show the convergence of ur ; towards the unique stochastic entropy solution of our problem, we aim to
pass to the limit in the above inequality. Thanks to Proposition 6 we know that for any P-measurable set
A, E[ILAIN%h’k] — 0 as h — 0. Thus it remains to study the convergence of the left-hand side of (47). Recall
that thanks to the a priori estimate stated in Proposition 1, ur  converges (up to a subsequence denoted
in the same way) in the sense of Young measures to an “entropy process” denoted by u in LQ(Q xQ x (0, 1))
(see Section 4.3).

1. Study of E[ILAan(uT’k)apt(m,t)d:rdt]

Note that ¥ : (w,z,t,1) € Qx QxR — 1a(w)n(v)pi(z,t) € R is a Carathéodory function such that U (., ur k)
is bounded in L2(Q x @), using the compact support of ¢ it is therefore uniformly integrable, thus

E[IA /Qn(uT,k(Lt))(pt(z:,t)dmdt] - F [1,4 fQ j(;l n(u(z,t,oz))dozgod@t)dxdt] as h - 0.

2. Study of E[ILA/ @(uTyk)ﬁ(m,t).Vznp(a:,t)dwdt]
Q

Since ®(u7 k) is bounded in L?(Q x Q), using the same arguments as previously, we obtain

E [1A /; @(uT,k)ﬁ(;r,t).ngp(x,t)dxdt] - F [1,4 /;? f01 <I>(u(a:,t,a))ﬁ(x,t).thp(x,t)dozdxdt] as h - 0.

T
3. Study of E[]IA /0 fRd n'(ur,k)g(uT,k)cp(a:,t)da:dW(t)]
By denoting ¥ : (w, x,t,v) e QxQ xR - n'(v)g(v)¢(z,t) € R, thanks to Proposition 1, ¥(.,ur ) is bounded
in L?(Q x Q), and therefore ¥(.,ur 1) converges weakly (up to a subsequence denoted in the same way) in
L*(Qx Q) to an element called .
But, for any ¢ € L*(Q x Q), (w,z,t,v) € Ax Q xR = ¢(w, x,t)¥(w,z,t,v) is a Carathéodory function such
that (¢¥(.,ur )) is uniformly integrable. It is based on the fact that for any subset H of Q2 x Q,

1/2
fH\¢\1/(.,uT,k)|dxdth<H\p(.,um)HLz(H) [fHdedth] .

Thus, at the limit,
1
f \$dzdtdP = / f U(.,u(.,a))daddzdtdP.
QxQ QxQ JO

1

By identification, U(.,ur ) — f U(.,u(.,a))da weakly in L?(Q x Q). Using now the linear continuity of
0

the stochastic integral from L*(Q x Q) to L*(Q x Rd), which implies the continuity for the weak topology:

fOTn'(uT,k)g(uT,k)gadW(t) . fOTfoln’(u(.,a))g(u(.,a))<pdadvv(t) weakly in (€ x RY).

As 1alpo,r) € L*(Q x R?) one gets at the limit

B[14 /OTfRd 0 (ur )9y ) o, ) dzdW (1) ]| > B[ 14 [OT[Rd/01n'(u(m,t,a))g(u(m,t,a))go(x,t)dadde(t)].

28



hal-01061019, version 1 - 4 Sep 2014

4. Study of %E[]l,qf n"(uTvk)g2(uT,k)<p(x,t)da:dt]
Q

Since ¥ : (w,z,t,v) € AxQ xR = 1" (1)g*(v)p(x,t)1a(w) € R is a Carathéodory function such that
U(.,ur ) is bounded in L*(Q x Q), at the limit we get:

%E[ILA/Qn"(urﬁk)gQ(uT’k)cp(x,t)dxdt]—>%E[lAfQfoln"(u(x,t,a))gQ(u(x,t,a))ap(m,t)dad:cdt].

Finally, by passing to the limit in Inequality (47), we obtain:
For any P-measurable set A, for any 7 € A and for any ¢ € D (R? x [0,T))

0 < Efla /Rdn(uo)cp(x,o)dx]+E[lA/Qfoln(u(w,t,a))g@t(w,t)dadxdt]
+E[1AfQfol<I>(u(as,t,oe))ﬁ(a:,t).Vznp(I,t)dadxdt]
il [ [ [ et ) (ateta)) et dadedw ()]
+E[1A%fQfoln"(u(m,t,a))gz(u(x,ma))gp(w,t)dadajdt].

Hence u is a measure-valued entropy solution in the sense of Definition 2. Thanks to Theorem 1, u is
independent of a and is hence the unique stochastic entropy solution in the sense of Definition 1 and we
denote it by u. Hence, all the sequence of approximate solution wur  converges to u in Lj,.(Q2 x Q). In

addition, since ut k is bounded in L?(Q x Q), all the sequence converges in L? (2xQ)forany 1<p<2. m

A Theoretical background

The aim of this appendix is to prove the well posedness result stated in Theorem 1. The existence of a
solution is based on a parabolic regularization of our stochastic conservation law (1). The proof of existence
and uniqueness of the associated viscous solution (denoted w. in the sequel) is a classic one but for the sake
of completness we propose to redevelop the proof in Section A.1. In Section A.2.1, existence of a measure-
valued entropy solution in the sense of Definition 2 is proved by passing to the limit on the viscosity
parameter (denoted €), using as previously convergence in the sense of Young measures. Section A.2.2 is
then devoted to the proof of uniqueness of such a solution and as a by-product we deduce the existence and
uniqueness of the entropy solution of Problem (1) in the sense of Definition 1. Note that the following proofs
are adapted from the work of BAUZET-VALLET-WITTBOLD [BVW12] to the case of a time-space dependent
flux-function.

Remark 10 The existence result follows from the convergence of the finite volume approximation to the
solution of (1). However, in order to prove the uniqueness result, we need to know that the solution of (1)
1s the limit of the solution of the parabolic reqularization (48).

A.1 On the parabolic regularization

We are interested in this section in an viscous regularization of Problem (1) given by the following formal
stochastic PDE of nonlinear parabolic type for any e > 0:

g(u)dW  in QxR%x (0,T),

due — eAucdt + div [ﬁ(w,t)f(ue)]dt ( I (48)
ug(x), weQ,xeR”

tue(w, z,0)

Proposition 7 Set u§ in H} (Rd). Then, for any positive €, there exists a unique process u. € N (0,T; Hg (Rd))m

t
C([0,T7]; L*(Q x RY) weak solution of Problem (48) such that at[ue - f g(ue)dW] and Aue are elements
0
of L2(Q x Q). Moreover, there exists a positive constant C' such that

2 2
Ve>0, ||uellpoo(o,r;02(0xrdy) + €Hue||L2((o,T)xQ;Hg(Rd)) <C.

Proof. (of Proposition 48) Following [Val08|, we propose a result of existence of a solution based on an
implicit time discretization. Let us first introduce some classical notations needed in the sequel.
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Definition 5 For any sequence (x,) c¢ X, where X is any Banach space, let us denote by

8
e
I
M=z

Tel[(r-1)At, kAL

k=1
~At al Tk — Th-1
=y [7A [t - (k—D)At] +zp-1 | Lk-1)at, kA1)
k=1 t
At N
% Tk — Th1
Thus, &5— = ST Tkorg :
us (975 Z At [(k-1)At,kAt)

=
Il
-

and elementary calculus yields

N N
A At 2 2
| t”i?(o,T;X) =AtY; loel% 5 |7 tHL2(O,T;X) ALY |lzn]x;
k=1 k=0
N-1
|22 =T T2 0 mixy = At Y Jkar — 2|5
k=0

HaLmH;(o,T;X) - NZ_:I ke = ol
ot =

HJCMHLW(O,T;X): max |zk|x ||5At||L°°(o,T;X): max_|zk|x.
k=1,..,N k=0,..,N

Then the implicit scheme is the following one:
For given small positive parameter At and u,, in L?(Q, Ha (R%)), Fna;-measurable, find u,,1 in L2(Q, Ha (R)),
F(n+1)at-measurable, such that P-a.s and for any v in H; (Rd)

fRd [(un+1 = Un )V + At{eVUn1.VU - ﬁ(w,nAt)f(uml).Vv}]dx = (Whe1 —Wy) fRd g(un)vdz, (49)

where W,, = W(nAt).

Lemma 3 If At< such a sequence (un) exists.

2¢
(VIfle)?
Proof. (of Lemma 3)
Denote by V = LQ(Q,HI(Rd)J-'(nH)At,P), H = LZ(Q,L2(Rd),]:(n+1)At,P) and by T the application, de-
fined for any S € H, by u = T'(S) is the solution in V of the varational problem

VveV, E [/}Rd [(u = Un )V + At{eVu.Vov - ﬁ(x,nAt)f(S).Vv}]dw] =K [(W,Hl - Wn)/ﬂ;d g(un)vdx] .

Thanks to the theorem of Lax-Milgram, T is a well-defined function. Moreover, for any S1,S2 € H, one has
that

B [/R jus - uafde + bl [ [9(us —uQ)\Qd:E] _ AtE[fRd Bz, nAD (F(S1) - £(52)).7 (us —uQ)dI] ,
and

E[/Rd |T(Sl)—T(Sg)|2dcc]+ %EEUM \V(T(Sl)—T(Sg))\2dm] < %E[Ad(ﬁ(x,nAt))2(f(sl)—f(SQ))de].

2
Thus, if At < m (where V is given by hypothesis [Hs|), T is a contractive mapping in H and the

result holds. =

Setting the test-function un.1 in (49) and using the formula ab = 1[a”® +b” - (a - b)*] with a = un+1 —un and
b = un+1 yields

%E [[Rd[|un+1|2 —|tn|® + |tns1 — un|2]dm] + AteE [/ﬂ;d |Vun+1|2dx] - AtE [/Rd ﬁ(x,nAt)f(un+1).Vun+1dx]
. E [(WM1 W) [ 9w - un]dx] VB [(Wn+1 -w) [ g(un)undx]. (50)

Note that since div[o(z,t)] = 0 V(z,t) € R x [0,T], fd (z,t) f(u).Vudz = 0 for any ¢ in [0,T] and any
R
u e D(R?), thus for any uw e H*(R%). Then

1

,EU [ttrs]? = [ttm]? + [t —un|2]dx]+AteE[f \vumfdx]
2 Rd Rd

< AtE[[Rd gz(un)d:v] + iE[./]Rd [Un+1 fun]Qdm], (51)
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and, if one denotes by |.| the norm in L?(R?%)
21, 1°¢ 2 = 21 1 2 E=) 2
B [Junl?]+ Z [luser —uel*] + Ate' S B[1Fukea|*] < ol + A6 Y. B[Jg(ui) ],
k=0 k=0 k=0

The discrete Gronwall lemma asserts then that
1E 2 1n71E 21, At nilE 21 o 1 2 2 A4l 12 o 2|’ |2, kAt
S [ual] 3 3 Bl —wil”] + Ate 3 B[19uenl”] < gluol? + fuolAtlg'12 3 ¢

< C

Using the notations of Definition 5, this only gives an L (0,7, L?(Q2xR%)) estimate on v** and an L*(QxQ)
estimate on evVu®*
Since uop € H*(R?), setting the test-function v = uns1 — Un — (Wns1 = Wi )g(un) in (49) yields

[tns1 = tn = (Wis1 — Wn)g(un)HQLQ(Rd)
+Ate [Rd VUn+1.V [Un+1 = tun = (Waet = Wa)g(un)] dz

- At fRd [tnst — tin — (Winst = Wi )g(un )] 32, nAE) f (11 ). Vitnar d

1 1 ,
< §”Un+l —Un — (Wn+1 - Wn)g(un)Hi2(Rd) + §C(f ,V)(At)2||VUn+1 HiZ(]Rd)d.
Since F [(Wml -Wh) fd Vun.Vg(un)dx] =0, one gets that
R

E [/Rd Vtn1.V [une1 = tun = (Whet = Wa)g(un)] dl’]
= GBIVl + 19 Cnes = un) e ays = [Fn 2agaye]
-E [(Wml -Wy) fRd V[tins1 - un].Vg(Un)dm]
> SB[V oy + 519 nen = un) Fagays - 1Vunl2aqgays 286199 (un) 22y |
And then
El|uns1 = un = (Wi - Wn)g(“n)||i2(Rd)]
+ DB [Vt gays = [VunlFaqgays + 519 (nen = )32 e |

< 2A)%E[[Vg(un)[L2@aya] + C(V, f) (A E [|Vunsa ]2 (gaya]

Consequently, for any k,

zk: AtE[” Un+1 — Un — (Wn+1 - Wn)g(un)

k
€
At HQ] +6E[Hvun+1”iQ(Rd)d] 3 Y E [Hv(uml _u”)HiQ(IRd)d]

n=0

k+1
< C(V.fg)At Y B[|Vun|iagay ] + B [|Vuo|7aggay ] < Cte. (52)

n=0

N
Let us define for any (z,t) e R? x [0,T7], %" (z,t) = > 0(x, kA) L [(k-1)at,kat) () and denote
k=1

~ N By - By
B = > [thkl[t - (k-1)At] + Bk—l]]l[(k—l)At,kAt)

k=1
n—1 nAt
with Bn = 3 (W™ W*)g(u*) = f g™ (.~ AL))AW.*
k=0

Thanks to (52), one gets that u and ! are bounded in L (0,T, L*(Q, H*(R?))), that 8; [~At BAt] i
bounded in L?(0,T, L*(Q, L?(R%))) and that 7*" - u®" converges to 0 in L(0, T, L*(2, H' (R%))).

Denote by u a limit point of u®* and 7! for the weak-*convergence in L (0, T, L2(Q H (Rd))) 9uy respec-
tively fu, a limit point of g(u®?), respectlvely f(u”?), for the weak convergence in L*(0,T, L*(Q, H* (R?))).
Since @™ — B! converges weakly in L?(€2, W (0,T)) where W(0,T') denotes the set of

L*(0,T, H'(R?))- functlons W such that 8; ¥ e L?(0, T, H *(R%)) with the common identification of L*(R?)
with its dual space, 7' — B2 converges weakly in L*(Q,C([0,T], L*(R?))). Thus, for any t € [0,T],
(@™ - B2*)(t) converges weakly in L?(€2, L?(R%)).

Note that for ¢t € [nAt, (n + 1)At[, one has

*We consider that u®t(s) = ug if s < 0.
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R (W) - W),

Then, thanks to the a priori estimates and the properties of the Brownian motion :

- nAt
At

B0 - [ o (s AW (s) = (W™ - W)g(u”)

E[lv™ - W)

= E[lg(u™)] ][(t ntAt) ot nAt(t nAt) + (t - nAt)]<CAt.

- W) - W)

Since g(um(. - At)), as g(um) converges weakly to some function g, in L2(0,T, L*(Q, L*(R%))), thanks to
the properties of the It6 integral, [ g(u™' (s—At)dW (s) converges weakly to / gudW (s) inC([0,T], L*(Q, L? (]Rd))),
0 0

and B2' does the same. Thus, the weak convergence of 7°" — B2" is toward u — f gudW (s) and, for any
0

t, t(t) converges weakly in L?(9, L2(R%)) to u(t).

Moreover, for any v € H'(R?), by denoting 5°'(.) = Z (., kAL (k-1)at,kat) ()

f O [ﬂm - Em] vdx + € f vurtvodz — f 17Atf(uAt)Vvd:c =0
R4 Rd RA
and at the limit one gets

t
fRd O [u— /(; gudW(s)]vd:r+e/D;d VuVovdr - /Rd U fuVodx = 0.

Note that the It formula applied to the function W(t,v) = e “|ju||® yields, for any positive ¢ and any
t € [0,T] the following energy equality

¢ t
e B[ |u(t)]?] +2¢ f e E[|vul?]ds -2 /0 E[[Rd e‘“ﬁfuwdx] ds (53)
¢
= Juol? e [T B[l Pds+ [ e B [lgul]ds
In addition, one has for any positive ¢ and n > 0, by multiplying (51) by e “"2*, that
E[/ <efant|Un+l|2 _e*C(’nfl)At|un|2)dI:| 4 At?eeiantE[f |vu”+1|2d$:|
R R4
< AtefantE [[ 92 (’U/n)dﬂi] 4 (e—ant _ 6*C(n71)At) E [/ |Un|2dCC:| )
R4 R4
Adding from 0 to k, we get

k
e B [fuker|*] + At2e Y e X B[ Vi ]

hal-01061019, version 1 - 4 Sep 2014

n=0
k k
< fuol®+ At Y e M E[g(un)|P] - eAt Y e DA E [Jlun ] (54)
n=0 n=1
Moreover, by noting that
(k+1)At ko en
/0 B [|vut?]ds < Z AE[|Vuns ],
kAt k=1 ~(n+1)At
that fce_cmf e_csE[HuAtHQ] ds = 7ce_CAth e B |lunnl|*]ds
0 n=0 JnAt
k-1
< _Cecht E[||Un+1|‘2:| Ate*C(n+l)At
n=0
k
_ _ Z E[HunH ]Atefc(nJrl)At
n=1
k-1 (n+1)At
and thar [ B [lg@AFas = % [ B g s
n=0J"
kel —c(n+1)At
> Y B[llguna)|?] At
n=0

k
= ~Adlg(uo)|[*+ At 3 EfllgCun)|F] e,
n=1
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we deduce from (54)
B [P v 2e [ e B[l ds
<ol + Atlg(uo) P+ [ e B [lg(uA) P ds - eee [ e B [ut ] ds.
Now, for ¢ € [kAtL, (k + 1)At[, we obtain
B [u® (0))?] +26f0te*“E[HvuAt\|2]ds

t —CS8 —C (t_At)+ —CS8
< Juol + Atlg(uo) |+ [ e Blg(u)1P)ds—ce [T e B [ut)] ds,

t

and, since u™ is bounded in L= (0, T, L*(2, L*(R%))), one gets by noting that e“FE [Hu

At)2
(t-At)* H ]

ds <
At”um ”2L°°(0,T,L2(QXR‘1))
A O 2 [ B vutt s
. Hu0||2+0At+/Ote*“E[Hg(u“)u?]ds—ce*cmfote’“E[HuAtHﬂdS-

Using this last inequality and the fact that for any v in H*(R%) and any s in [0, 7], fd (z, s) f(v)Vudz =0,
R

one has

SB[ @]+ 26 [ B[V - 0))*]ds

—2/ [[ ﬁ(m,s)[f(um)—f(u)]V(uAt—u)dm]ds

+4ef0 e g U vul Vudx]ds—Qe/ e B[|vul?] ds

||u0H2+CAt+2fO e*CSEMdﬁ(x,s)f(u t)Vud:r] ds (55)
+2 /te*“E[fRdﬁ(z,s)f(u)w“dx] ds

w2 [fep] [ dg(u%g(u)d:c]ds— [ B g s

o [ Blgw) g ]ds e [T B 10 - ul*]ds

¢ t
—2ce A f e“FE [/ uAtudx] ds + ce 2 f e“FE [Hu||2] ds
0 R4 0

Note that there exists ¢ = C(V, f,g,€) > 0 such that, for A¢ small, one has that

/N

_zejte*“E[nv(u“ —u)||2]ds+2fte*“EURd[a(m,s){f(um) )V —u)dw] ds
s LBt - g ds et [T B[l -l ds

< e [T BV 0 Plds ¢ [T B (19 (1) - fw) ] ds
o [T B low™) - g ds - et [ B - o] as

< e [TeTB[IvEt -w)) s

cAt

1 _
Indeed, for ¢ > 0 satisfying *(Cfv)z + C; <ce with At > 0 small, one shows that
€

1
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Thus, for such a choice of ¢ and by integrating (55) with respect to t from 0 to T one gets:

T T t
fo e'“E[nuN(t)nQ]mefo fo B[Vt - u)|?] dsdt
< Tluo|® + CAt (56)

T ¢ —cs At T t —cs At
+2f f e E[/ o(x,s)f(u )Vuda:]dsdt+2f f e E[/ v(x, s) f(u)Vu dx]dsdt
0 0 Rd 0 0 Rd
Tt A T ot )
+2/ / e CSE[/ g(u )g(u)dm] dsdt — f f e “E[]g(u)]?] dsdt
0 0 Rd 0 0
T rt T rt
—2ce oAt f / e_csE[[ uAtudx] dsdt+ce_cmf / e_csE[||u||2]dsdt
0 0 R4 0 0
T t —cs At T t —cs 2
_4ef f e E[f Vu Vudx] dsdt+2ef f e “E[|vul*] dsdt.
0 0 R4 0 0

This yields
. T —ct At 2
lim sup e E[Hu 3] ]dt
At 0
T 5 t _ t _ 2 t _ 2
< [ {2 e EU a(x,s)fuwdx]ds—zef e B[Ivu()[*]ds-c [ B lu(s)|*] ds
0 0 Rd 0 0

v [ [ en] [ matae]asie- [* [ B 1ot ] ds,

and, thanks to the energy equality (53),
. } T —ct At 2 T t —cs 2 T —ct 2
hmAstup € E[|u®" ()] dt + L e Ellgu - g(w)|*] dsdt < € E[|lu(t)|?] dt.

Thus, one gets that g, = g(u), ut converges to u in L2((0,T) x Q@ x R?) and f, = f(u). This means that
u is a solution and since it depends on € > 0 we will denote it u.. Remark that it is a direct proof to show
that it is unique.

Then, the stochastic energy asserts that (see for example GRECKSCH-TUDOR [GT95| Th. 3.4 p.42):
2 ¢ 2 .
ey +2 [ [ [eVue? - () (ue). VucJdeds

2 t ¢ 2
= HUE(O)HH(Rd) +2/(; [Rd ueg(ue)dzdW (s) + fo /D‘wg (ue)dzds.

t

Since / [d (x, s) f(ue).Vuedzds = 0, taking the expectation and using the lemma of Gronwall, there
0

exists C > 0 such that for all € >0

2 2
llwellzos (0,722 (xmy) + €||Ue||L2((0,T)xQ;H5(Rd)) <C.

t

Finally, as by the existence proof 0 (uE - f g(ué)dW) € LQ(Q x Q), we get that Aue € L>(Q2 x Q) and the
0

proof of the proposition is complete. m

Proposition 8 If the initial condition u§ € L*"(R?), p > 1, then u. € L=(0,T, L** (2 x R?)) as well.

Proof. The proof of this result will not be developed here as it is a straightforward adaptation of the one
given in [BVW12]| Proposition A.5 p.702 to the case of a time-space dependent flux-function. m

A.2 Existence and uniqueness of the stochastic entropy solution

A.2.1 Existence result

The aim of this section is to show the existence of a measure-valued entropy solution in the sense of Definition
2. To do this, we first consider the viscous parabolic case: assume that for any positive €, u. is the solution
of the stochastic nonlinear parabolic problem

duc — eAucdt + div [9(z, t) f (uc) |dt g(u)dW in QxR% x (0,7T),
ue(w,z,0) = wug(z), weQ,zeR?,

where u§ € D(R?). Consider ¢ in D* (]Rd x[0,7)) and n € A. Using the same technics as in [BVW12] (such
as It6 formula, chain-rule for Sobolev functions, integration by parts formula, the convexity of 7 and the
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positivity of ¢), we get, P-a.s in Q2
0 < Adn(u8)¢(x,0)dx+an(ue)atcp(x,t)dxdt—ean'(ue)Vuevch(x,t)dxdt
+fQ@(ue)ﬁ(m,t)vzgo(x7t)d:cdt+fOTfRd 0 (ue)g(ue ) (, ) daedW (1) (57)
+5 8" o (w)e (e et

where ® denotes the entropy flux defined for any a € R by ®(a) = fa n' (o) f (o)do.
0

Now we aim to pass to the limit in this inequality when ¢ — 0. As for the convergence of the finite volume
scheme, the technique is based on the notion of narrow convergence of Young measures. Since u. is a bounded
sequence in N2 (0, T, L*>(R%)), the associated Young measure sequence converges (up to a subsequence still
indexed in the same way) to an “entropy process’ denoted by u € L= (0,T, L*(Q x R%x]0,1[)). Using the
same kind of arguments as in the work of [BVW12], one gets at the limit, P-a.s in 2, for any n € A and for
any @ € D+(Rd x[0,T))

0 < /ﬂ;{d n(uo)go(;c,O)dat+L[01n(u(.,a))@tap(m,t)dozdxdt+];2/01<I>(u(.,a))ﬁ(m,t)vzgo(x,t)dadxdt
+fOTfRdfoln’(u(.,a))g(u(,,a))go(m,t)dadxdW(t)+%fQfolgQ(u(.,a))n”(u(.,a))go(x,t)dadxdt.

Remark 11 Let us state some properties implicitly satisfied by such an entropy process u. We will not give
the details of the proofs of these properties since they are very close to the one developed in [BVW12] and
can be adapted straightforward to the case of a time and space dependent fluz-function.

e The entropy process u is an element of L™ ((O,T),LQ(Q x R% x (0, 1)))

e Moreover, u satisfies the initial condition in the following sense: for any compact set K c R?

esslim [f lu(z,t, o) - uo(x)\dadm] =0.
Kx(0,1)

t—0+

Hence we get the existence of a measure-valued entropy solution in the sense of Definition 2. The aim of
the following section is to show the uniqueness of such a solution.

A.2.2 Uniqueness result

The aim of this subsection is to prove the uniqueness of the measure-valued entropy solution u of the
previous subsection. We will also show that it is the unique entropy solution in the sense of Definition 1.
In order to do this, we first show that the following Kato inequality holds :

Proposition 9 (Kato inequality)

Let u, 0 be two measure-valued entropy solution to (1) with initial data uo,do € L?(R®) respectively. Then,
for any nonnegative H* (R x [0, T))-function @ with compact support, it holds

0 < E[[Rd |ﬂo(m)—uo(x)|gp(m70)dx]+E[/q; /01/01|u(x7t75)_ﬁ(:c7t7a)|atg@(x,t)dadﬁdxdt]
B[ [ [ At 5,00 1.0)00 e, Odadsard] 58)

where F(a,b) =sgny(a—-0b) (f(a) - f(b)).

Then, by exploiting the finite propagation speed property for conservation laws with Lipschitz-continuous
flux function and choosing uo = %o, we will deduce from this Kato inequality that u = G and thus any
measure-valued entropy solution is obtained as the limit of solutions . of viscous parabolic approximations
to (1). This is stated in the following theorem.

Theorem 4 There exists a unique measure-valued solution in the sense of Definition 2. Moreover, it is the
unique entropy solution in the sens of Definition 1.

Proof. (of Theorem 4)

The proof of this theorem relies on the result stated in Proposition 9. Set = V||, K >0, v(t) = (T;t)+ ,

and denote by 1 any nonincreasing regular function with 1 i) SY <L gaag Considering ¢(x,t) =
Y(|z| + kt)y(t) in (58) leads to
1,1
0 < V(O)E[/d |ﬂ0—u0|¢(|x|)daz]+E[/ vo [ |u(m,t,ﬂ)—ﬁ(x,t,a)|w(\x|+mt)dad6dmdt]
R Q o Jo

+E[/Q folfolw’qxum) \u(x,t,,B)—ﬁ(m,t,a)w(t)dad,@dmdt]

+EUQ /01 /Olw'(m+mﬁ)]—'(u(m,t,ﬂ),ﬁ(x,t,a))ﬁ(x,t)é—"y(t)dadﬂdmdt].
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As 1) is a nonincreasing function, the choice of x yields
1 1
2| [ A [ [ 1.8 -t wt)dadsdzar| < 1B [ la0(@) - uo@)|v(a)da).

If @ = uo, fixing K = R+ kT for any positive R leads to

EUB<0,R> fol f01|u(x,t,ﬂ)—ﬁ(m,t,a)|dad6dmdt] -0.

This implies that, for any R > 0, u(z,t,8) = G(z,t,«) for almost any = € B(0,R), t € (0,T), w € Q,
a,B€(0,1). Thus, on the one hand u = G; on the other hand u(x,t,a) = u(z,t) is independent of «, hence
an entropy solution in the sense of Definition 1. m

Proof. (of Proposition 9)

Let us denote by u the measure-valued entropy solution from the Subsection A.2.1 (a limit point of (uc))
and 0 any other admissible measure-valued entropy solution, associated respectively to initial conditions ug
and 4o in L*(R?).

Consider k € R, n € A, ¢ in D'(R? x [0,T)), K ¢ R? a compact set such that suppp(.,t) ¢ K and de-

note by G(z,y,t,5) = ©(y, ) pm(x —y) pn(t — s) where pm and p,, denote the usual mollifier sequences in R?
and R, respectively, with suppp,, c [—%, 0]. Denote also by p; a mollifier sequence in R and for convenience

set p = (x,t, ). Finally let us denote by F"(a,b) = lan'(a -b)f'(0)do.

Since 101 is a measure-valued entropy solution, it satisfies the entropy inequality given by Definition 2. By con-
sidering the test function G' and the entropy n(.—k) in such a formulation, multiplying it by p;(ue(y, s) — k)
and integrating k over R and with respect to variables (y,s), we get, on the one hand by taking the
expectation that

0 < B[ [ [, 1) =1 )p )~ v)dop(uly. ) - K)dkdyds|
+E ];2 L[ ' fQ n(ﬁ(p)—k)pn(t—8)3ts0(y78)pm(w—y)dppz(ue(y,b’)—k‘)dk’dde]
B[ [ [ [ na) = ke )00t = )9 (@ = y)dpouCue . ) - W) dkdyds|

B[ [ [ F @) k5 0~ )V 0,5)pn (¢~ ) (e, 5) = R)dkdyds]

B[ [ [ [ F @) k)5 0% - 0)pn (= 5)io: ) (e, 5) = R)dkdyds]
SB[ L L[ oG @) - ko =)ot~ s)e(y,5)dop (e . 5) = k)dkdyds]

B[ [ [ L7 ) - g0 da (. 5)pra ~ y)pnt - s)dedW ()1 (. 5) - K)dkdyds]
::Il +Iz+[3+[4+[5+[6+17.

On the other hand, since u. is a viscous solution of Problem (48), by considering also the test function G
and the entropy 7(. — k) in the Inequality (57) satisfied by u., multiplying it by p;(a(p) — k) and integrating
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k over R, a between 0 and 1 and with respect to variables (z,t), taking the expectation, one gets that
0 < B[[7 [ [ [0 - K3e05)pn(pn e - )y (ap) - K)dkds |
B[ [ [ n(ue,5) = Kpat - )02, 9)pm (@ - y)pu(alp) - k) dhdydsdp |
B[ [ [ nCue,5) = K0 5)0:pn(t =)o - y)pu(alp) - k)dhdydsdp |
—eE[/Ol/Q_[Ran'(ue(y,s)—k)pm(x—y)Vyue(y,s)Vycp(y,s)pn(t—s)pl(ﬁ(p)—k:)dk:dydsdp]
B[ [ [ 0 ) = D009 Ve (5:5) Vi (& 9000 ¢ - )n(a() - k) dhdydsd |
B[ [ [ [ F w5150 9)0m (@ - 1) 900 )00t - )pu(a) - R)dhdydsd
B[ [ [ [ F ) 500V (0 - 9090t - )u(ao) - kdkdydsds
B 9 e ) els) = o (o = )t = ). )pu((p) - k)dkdydsds
B[ [ L e 5) = g0 510 = ) 1 - ) dydW (5)p1 (a(p) - Kk

= J1+J2+J3+J4+J5+J6+J7+J8+Jg.

Summing up the preceding two inequalities, our aim is now to pass to the limit in the following order:
n — oo (convolution in time), { - co, n - |-|, € > 0 and finally m — co (convolution in space). In the
following, as a uniform approximation of the absolute value function, we choose n = ns € A with n5(r) = 1
for r > 8, n5(r) =sin(F5r) if [r] <& and ns(r) = -1 for r < -4.

Note that this convergence study has been proved in details in the work of BAUZET-VALLET-WITTBOLD
[BVW12] in the case where the vector ¥ does not depend on the time and the space variable. Thus, we will
only develop here the proof of convergence of terms involving the flux function 4(x,t)f(.), i.e. 14+ + Js and
I5 + J7.

@ Since supppn © [-2,0],

L+ E [ L, L Lanto@) ~k)e. )on(=s)om (2 ~ y)dapi(uc (v, ) - k)dkdyds]

B[ [ [ [ 1) - (.09 (@ - y)on(dyp(ata,t,a) - Kdkds |
= B [ [ nti0(@) - e s)pu (9o (@ - p)dapiuc(v,5) - K)dkdyds |

—— FE [/Rd [to(z) — uo ()| go(:c,O)dx] .

n,l,m,e,m
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@ As ¢ is a function of variables (y, s)

12+J2

£ UQ fR [01 /;? n(a(p) = k)pn (t = $)0rp(y, 8)pm (z = y)dppr(uc(y, s) - k)dkzdyds]

b [fo 1 fQ fR /;; n(uc(y,s) = k)pn(t = $)0s0(y, s)pm(z - y)pr(a(p) - k)dydsdkdp]

E [fol fQ fm /Q n(uc(y,s) = k)pn(t = $)0s0(y, s)pm(x = y)pr(a(p) - k)dydsdkdp]
E [/;2 fol /01 lu(y, s, B) - a(y, S,Oz)|6s<p(y,s)dadﬁdyds] :

n,l,n,e,m

@ Since 7 and p; are even functions, by setting 7 = u.(y, s) - k and o = —((p) - k) one shows that

et = B[ [ [ [0 [ 0a0) - uv,5) + 7000 5)00n(t - )on (o - y)dppu(r)drdyds]

B[ [ [ uew5) ) - 20 $)0:01 (¢ $)pn (o~ )dydspr(-0)dordp|
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@ Thanks to Proposition 7, eVu. converges to 0 in L? ((0,7) xQ, L? (Rd)) when € - 0 and so

gieds = e[ [T 05) = Koo ) Ve, )V 0,9 (- 5)dydspn () - K)akdp |

B[ [ [ 0 ) = D009 Ve (5:5) Vo (0 = 900 ¢ - $)dydspr(ap) - Kk |

e
n,l,n,e

® Since ¢ is a function of variables (y, s)

Li+Js = E[ LI 1 [Qf"m(p),k)a(x,t)pm(x—y>vzw<y,s>pn<t—s)dpm(ue(y,s)—k)dkdyds]

B[ [ [ [ F ), 150 9)om (@ - 1) (0. (¢ - $)dudspr (ap) - D)dkds

B[ [ [ [ 7 ew5) 00305000 (@ 1) 900 )00 ¢ - 9)dydspr (a(p) - K)dkd .

and

ivde = B[ [T [ [ P e, 130000 @ - 0) 9,00 D (a(p) - K)dydids

[ [/01 /Q fm T (ue(y, 1), 0z, t,0))0(y, ) pm (2 = y) Vy o (y, t)dydp]

i B [/01 /Q fRd F(ue(y, ), a(z,t,))o(y, t) pm(z - y)Vyso(y,t)dydp]

n—|.|

B[ [ [, ) F 5.4t 0)5 000 (@ 1)V, DB dyds |

e—0

—>E[/Q f01 folf(u(a:,t,ﬁ),ﬁ(m,t,a))ﬁ(ac,t)Vzgo(Lt)d,Bdadxdt],

m—oo

where F(a,b) := sgny(a —b) (f(a) - f(b)).
Indeed, let us justify the passages to the limit in detail.

e Limit as n - oco:
A = E[fol fQ/RfQ}‘"(ue(y,st)ﬁ(y,s)pm(m—y)Vygo(%s)pn(t—s)dydspl(ﬁ(p)—k:)dk:dp]
F fol /Q /IR /Rd F'(ue(y, 1), k)0(y, t)pm(z = y) Vye(y,t)p(a(p) - k)dydkdp]

= B[ A w9 - F e 0,0 50590 0:5) = ) (¢~ 5)dydspu(p) - )k |

B[ [ [ 7 e ) 0305 - )V 5) = (0. )]t s)dudsp (ap) - K)ddp |
B[ [ [ 0.0 [00,5) - 53 0)) (= 0) V(5 090 (- 5)dydspn (a(p) - K)akp |
B[ [ [ e 050 - ) Ve (0 (al) - R)(1 = [ pu(e - )ds)dydhdp)]-

Since F"(-,k) is a Lipschitz-continuous function with the same Lipschitz constant as f denoted CY,

T
we DY (R*x[0,T)),and 0< 1 - fo pn(t—8)ds < 1(p—o/n,) a.e. on (0,T) and |n'(r)| = Ins(r)| < 1 for
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all 7 e R, we get

il < GVE[ [T [ e05) - e D00 9o (o - 1)t s)dudspr(ap) - k)]
OV [fl/C;fR/OT/K|u6(y’t)_k|pm(x—y)pn(t—s)dydspl(ﬁ(p)—k)dkdp]
c(cm so)E[ fQfR/OTfK|u€(y7t)_k|pm(x_y)pn(t_s)dydspl(ﬁ(p)—k)dkdp]

L o L w0 6) koo - o (k)]
o(Cy,V,0)E /O /T/K Iue(y,s)—ue(y,t)lpn(t—S)dydsdt]
O e[ o [ 0t = 600) o 2 = )t s)dydspr (K|
([ et ) = 60) + HlpoGa =)o (- s)dydsp ()
+c(cf7v¢>E[ L o o L e = 80) oo - ) (k) ayanap

+c(Cy,V, @)E[

IN
HO

C(Cf7 v, 50) E

IN

c(Cf,go,V,T;){E[/OTfoOT|ue(y,s)—ue(y,t)|pn(t—s)dsdydt]

+%E[/OT/K/01[|u€(x,t)|+|f1(:r,t,a)|+]lK(x)]dadxdt]

+E[/TT2/nfK/OI[|ue(x,t)|+|ﬁ(w,t,oz)+1K(x)]dadmdt]}

— 0.
n—oco

e Limit as [ — oo:

Az = EUOIfQfmfRdf"(“e(yvt),k>ﬁ(y7t)pm(w—y)vyso(y,t)pz(ﬁ(p)—k)dydkdp]
‘E[flff f"(Ue(y,t),ﬁ(p))ﬁ(y,t)pm(:v—y)vygo(y,t)dydp]
B A L o (77 ety k) = 7 e, 8). 60)) Yo D (2= 1) T2 0. ) () - k)dydidp .

Since F" is Lipschitz-continuous in its second variable, uniformly with respect to the first variable, we
can estimate

ol < VE[ [T 0,8 - F el 0,80 196 Ol o - w)o1(0p) - K)dydkdp]

< Ve B [T [ [ [ k- a0V 0lon(e - v)o (@) - Ddydkdp|
Ve(F)
l

< fQ [Vyo(y, t)|dydt

— 0.
[

Limit as n=ns - |- |:
As for 1 =ns, we have |[F"(r,s) - F(r,s)| <dCy for any r,s € R, we can easily estimate

A= B[ [ S (P e, 800) = F e ,1). 60)) )0 i = )V )y
by
sl < aCsv [ [ 190e(ut)lom(x - y)dydrdt < 6C; V. [ |90y, 1)l d

which goes to 0 as 6 — 0.

Limit as ¢ - 0: .

By denoting G(k,y,t) = /Rd _/0 F(k,a(x,t,a))v(y,t)pm(z—y)Vye(y,t)dadz , which is a Carathéodory
function with suppG(k,-,t) c K, one gets at the limit

E[fol fQ /Rd F(ue(y,t),a(x,t,a))v(y,t)pm(z —y)Vytp(y,t)dydp]
E UQ g(ue(y,t),y,t)dydt]
— [fol fQ fRd fol Fu(y,t, B), (e, t,0))o(y, t)pm (e - y)Vycp(y,t)dﬂdydp] ,

e—0

39



e Limit as m — oo:

As B[ [ [ [ [ (Fu.e) a6 t0) - Fae ), awt.0) )0 0pm (@ - )70 Odydsd]

| As]

IN

VE[[ [T [ 1Rttt a) - Falot, ). 4ot a) 9,6 Dl - v)dydsds]

IN

veF L[ [ [ [ Tut.8) - (et 8)lpn o - y)dydsdoi]

— 0.
m—oo

® Now let us consider Is + J7: as Vypm (2 - y) = —Vapm (z —y) we get

|I5 + J7|

- ‘E[ L L L 7 @R 000 8)Tapn &= ) (= )b () - W) dhdyds|
B[ [, R0 )T = 9t~ s (a) - Ky |

i ‘E L L), 1 S 0.0 (05) = K3, 0) Ve = )t = ) (k) ks
e[ [ fn(ue(w),ﬁ(p)—k>a<y,s)¢(y7s)vypm<x_y)pn(t_s)dydspl<k)dkdp]‘

= B[L L 0,00 - 05000, )t~ ) (R

[ [ )] f”(m(y,s),ﬁ(p)—k)ﬁ(y,s)w(y,smpm(m—y)pna—s)dydspz(k)dkdp]‘

IN

B[ L A7 @) w5 =) - F7 (0,50, 800) = )50 5 m (= ) (¢ s)dppu(k) ks

+

B[ [ 7w s). ) - 0[5 0) - 50.5) w55 = ) (¢ s)dppu(k) iy |

Note that since div[d(z,t)] = 0 ¥(z,t) € R? x [0,T], an integration by part with respect to z allows us to
show that

B[ [ ) F wws), w500 = B[00 0) = 50.5)} 055 (@ = ) (¢ s)dppu(k)idyds | =

In this way,

hal-01061019, version 1 - 4 Sep 2014

|15 + J7|

B[ A7 ) uew.5) =) = F7 (0,50, 80) = )5, 005 = 1) (¢ 5)dppu(k) s

<

+|E [./R /01 sz {f"(ue(%s), u(p) - k) - F'(uc(y,s), ay, s,a) - k)}[f}(:mt) - ﬁ(y,s)]np(y7s)vzpm(a: —y)pn(t - s)dydsdppl(k)dk] ’
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Using the symmetry of F (i.e. F(r,s) = F(s,r)), the fact that for n = ns: |F7(r,s) - F(r,s)| < 6Cy, the
Lipschitz-continuity of F with respect to both of its variables and the estimate |V pm ()| < em®, we get

\Is + |
£ [/Q fR fol /;2 [F7(0(p), uc(y, s) = k) = F(a(p), uc(y, s) = k)6 (2, ) Vapm (@ = y)|on(t - )y, S)dppl(k)dk:dyds]
b UQ fR fol /;; |F(a(p), ue(y: 8) = k) = F(uc(y, ), a(p) = k)|[(2, 1) Vapm (z = y)|pn(t - 8)<P(y,s)dppl(k)dkdyds]
+E|:fQ fR [01 /(:9 [F (ue(y, 5),0(p) = k) = F" (ue(y, ), 0(p) = B)||5 (2, ) Vapm (@ = y)|pn(t - s)so(y,s)dppl(k)dkdyds]
+CfE[foRf01me(x’t’a)*ﬁ(yv&a)H[@(wvt)*ﬁ(yvs)]vzpm(‘f*y)|Pn(t*S)W(y,S)dppl(k)dkdyds]

s VIE[ [ [ [ [ 19apn o= lon(t - 9w )dpm(i)dhdyas]

B[ [ [ [ @) - ) - F el ), 8O0 0 Vapn (= 9ot - (0. )dppn()dhdyas|

B [fQ /R fol fQ [F(a(p), ue(y, s)) = Fue(y, s), a(p) - k)|[6(z, ) Vapm (@ = y)lpn(t - s)e(y, S)dpm(k)dkdde]

e Cr VB[ [ [ [ [ 19.0m (= )lon(t = 5)ols)dp(R)dhdyds]

OB [fQ [01 fQ [a(e,t,a) —a(z, s, a)||[6(z,t) = 5(y, ) ]Vepm(z ~ y)|pn(t - s)go(y,s)dpdyds]

+CfE[fQ fo1 fQ [a(z, s, a) - a(y,s,a)l|[5(z,t) = 5(y,s)]Vepm(z - y)|pa(t - s)cp(y,s)dpdyds]
C(Cf»vv‘P)éfoB(yJ/m)|V;cpm(a:—y)\dxdy

s Cr VB[ [ [ [ [ I90m (@ = 0l e 510, 5)dopr () dyas]

O VB[ [ [ [ [ II9cpm = )lon (6= )0 )dpp () dhdyds]

+c(Cy, V, 80)5/Kf}3(y71/m)|Vzpm(m—y)\dxdy

+c(cf,@,¢,md“)(% +%)E[];T/(;T/;{fol|ﬁ(:r,t,a)7ﬁ(x,s,a)|pn(t7s)dadmdtds]

+e(Cr, B, m™ ) (- +%)E[/OTfK‘/B(Oyl/m)/01|ﬁ(y+z7s,a)—ﬁ(y,s,a)|dadzdyds]

2(Cy, Vog,m)42e(Cr, Vi) [ [ [ upm(a - y)ldudy

(y,1/m)

T T 1
+2¢(Cy, 3, 0, m" N E [f / / f [a(z,t, ) —a(z,s,a)|pn(t - s)dadmdtds]
o Jo JrkJo

IN

IN IN
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1 . d+l A
+Ec(Cf,v,<p,m ’ 7Hu||L110C(Q><Q><(0,1)))

T 1
+c(Cy, 0, 0)m E [/ / f f [a(y + 2z, s, ) — a(y, s, a)|dadzdyds]
o Jk JB(o,1/m) Jo

hence limsup |I5 + I7| = 0.

n,l,6,e,m

@ As in [BVW12] one shows that
fvds = B[ [ L[ [ 6@ @) - 0o (@ - 1)t e, sdpmCuc(y. ) - )dkdyds |
SB[ [ 6w es) = K)o o= 9ot~ ). 5)dudspu (ap) - K)oy |

B[ [, [ [ [ o @ aw) - ko (@ - 1w O e ,1) = Rdpdiay
SB[ s O (e = B)pn (o = 90w () - Ky

1
n—oo 2
+

= SB[ [ o @ ) - a0 o - (i Dpdy |
5B L [ [ ety eyt - 6))pm(a - v)o(w. Odpdy].
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Note that it is not possible to pass to the limit with 7 — |- | in the preceding terms lim; lim,, Is + Is, as we
ignore the limit of ". Instead and as in [BVW12|, we keep this term for the moment. We will combine it
below with corresponding integrals resulting from the stochastic integrals and show that the sum of these
terms vanishes as 7 — | - |.

We come now to the estimate of the stochastic integrals. Using the same techniques as in [BVW12]
(p.687), which use properties of the stochastic integral and the Itd formula, one shows that I7 + Jo can be
written in the following way

I+ds = E[ Lo L [ o ) - gt daps (- AW @, )pn (@ - 1)de
x (f:g pi(ue(y,o) - k){eAue(y,a) —div [ﬁ(y,a)f(ue(yya))]}dg
+ f,g pi(ue(o,y) —k)g(ue(o,y))dW (o) + % fﬁg o1 (ue(y, o) = k)g” (ue(y, U))do) dkdyds]

::Hl +H2+H3.

And, using again the same techniques as in [BVW12] (p.689-693), we prove that I; and I3 tend to 0 as
n — oo. Let us mention that the regularity eAu. — div [17(, )f(ue)] € LA(92 x Q) is exploited to show that
I, - 0 (as n — o0) and that the L*(Q x Q) regularity of uc given by Proposition 8 is used to show that
I3 —» 0 (as n - o0). Moreover, thanks to the It6 isometry, we also prove that

o B[ [T @) - g0 - g (00)0 o o - ) dkdydp|

o <[ [T [ @) - e 1)g (@) 000 Opm (o - v)dydp|

l

Now, combining the preceding estimates yields that

li{nlim[[s +Js + Iz + Jo]

= B[ [ [0 - 0)aa)g e () O (o - )]

1

SB[ 0 @) @) - 0o (@ - ). Oy

1

SB[ 0 e 0 () = 6 o~ ) Dy |

= SB[ [ L e -t )} 0 (w00 - 6D - (o Dy |

—- 0,
n

for n = ns € A, the approximation of the absolute value function as defined above, since suppn”’ c [-4,6],
and |n"'| < 27”. Indeed, choosing this sequence of entropies yields the estimate

(] [ [ [ o) - o)} o (w00 - 60 o~ )y Ddydadod
GE[ [ [ [, (00w 0) ' (ww.0) - 6D pn(a - p)p(v)dydadads
3o B[ [ [ [ 1" (welst) - 8o (o - 1), Odydadai]

< 27rC§5E[/;? Adpm(x—y)w(y,t)dydxdt]

< 2mC3s fQ oy, t)dydt

— 0.
§—0

N

IN

Finally, passing to the limits in Iy +..+ I7 + J1 +.. + Jg successively with n, [, n = ns, € and m, we thus obtain
for any function ¢ in D*(R? x [0,T))

0 < E[/Rd [to () —uo(x)|g0(x,0)d:c] +E[fQ fol f01|u(1:,t,ﬁ) —ﬁ(x,t,a)|atga(:c,t)dadﬂdxdt]
+E[/Q [01 fol]—'(u(x,t,ﬁ),ﬁ(x,t,a))ﬁ(z,t)vch(x,t)dadﬂd:cdt].
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Note finally that, thanks to a density argument, this inequality still holds for any nonnegative test-function
e H'(R? x[0,T)) with a compact support and finally we get the Kato Inequality (58). m
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