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Abstract Recently developed methods for estimating the effective behavior of
nonlinear composites are reviewed. The methods follow from varia-
tional principles expressing the effective behavior of the given nonlinear
composites in terms of the behavior of suitably chosen “linear compar-
ison” composites. These methods allow the use of classical bounds and
estimates {e.g. Hashin-Shtrikman, effective medium approximations)
for linear materials to generate corresponding information for nonlin-
ear ones. Comparisons are made with numerical simulations for metal-
matrix composites, showing that the new methods are significantly more
accurate than earlier ones, especially at high nonlinearity and hetero-
geneity contrast. The methods can be extended to incorporate evolution
of the microstructure and its influence on the effective response under
finite-strain conditions. An application to a forming process involving
a porous metal is considered for illustrative purposes.

1. INTRODUCTION

In the context of linear elasticity, rigorous and reliable methods have
been available for quite some time to estimate the effective or over-
all behavior of heterogeneous materials. These so-called homogeniza-
tion methods include the variational methods of Hashin and Shirikman
(1962) and Beran (1965), both of which are particularly well suited to
composites with particulete random microstructures. There is also the
self-consistent approximation, which is known to be fairly accurate for
polycrystals and other materials with granular microstructures. For a
review, see e.g. Willis (1981).
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For heterogeneous materials with nonlinear (e.g. plastic, viscoplastic)
properties, rigorous methods have not been available until fairly recently,
even though efforts along these lines have been going on for a long
time, particularly in the context of ductile polycrystals. Following an
extension of the Hashin-Shtrikman (HS) variational principles by Willis
(1983), the first bounds of the HS type for nonlinear composites were
derived by Talbot and Willis (1985). A more general approach consist-
ing in the use of an optimally chosen “linear comparison composite” was
proposed by Ponte Castaneda (1991), and, independently for the special
case of power-law materials, by Suquet (1993). This approach not only
is capable of delivering bounds of the HS type for nonlinear compos-
ites, but also can be used to generate bounds and estimates of other
types, by making use of the corresponding bounds and estimates for the
linear comparison composite. More recently, Ponte Castaneda {1996a)
proposed an alternative approach making use of a more sophisticated
linear comparison composite, which while not yielding bounds, appears
to give more accurate results. In particular, this method gives the only
general homogenization estimates to date capable of reproducing exactly
to second order in the contrast the asymptotic expansions of Suquet and
Ponte Castaneda (1993).

While the idea of using linear composites to estimate the effective
behavior of nonlinear ones is quite old, the key feature in these novel
linear comparison methods is the use of rigorous variational principles
to determine the best possible choice of the linear comparison compaosite
of a given type. Within the context of the “secant” approximation, first
used by Chu and Hashin (1971), it follows from the work of Suquet (1995)
(and, independently, Hu {1996)) that the optimal choice is that made in
the variational method of Ponte Castafieda (1991), i.e. the secant moduli
of the phases evaluated at the second moments of the relevant fields in
the phases, and not at the phase averages, or first moments, as had been
done previously in the classical secant approaches. Alternatively, within
the context of “tangent”-type approximations, first used by Hill (1965)
in his popular incremental method, the work of Ponte Castafieda and
Willis (1999) shows that the optimal choice is, in some restricted sense,
that made in the second-order procedure of Ponte Castafieda (1996a),
i.e. the tangent moduli of the phases evaluated at the phase averages of
the relevant fields in a more general thermoelastic comparison composite.

In this short review paper, we attempt to summarize these recent
developments, focusing on applications and on comparisons with recent
numerical simulations (Moulinec and Suquet (1998), Michel et al. {1999),
Michel et al. (2000)). For more detailed reviews, concentrating on the
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more theoretical aspects, the reader is referred to Ponte Castaneda and
Suquet (1998) and Willis (2000).

2. EFFECTIVE BEHAVIOR

The assumption is made that the material is composed of N differ-
ent phases, which are distributed randomly in a specimen occupying a
volume @ at a length scale that is much smaller than the size of the
specimen and the scale of variation of the loading conditions. The con-
stitutive behavior of the nonlinear phases will be characterized by convex
energy functions w) (r = 1,...,N), such that the local stress-strain
relation (Fig. 1(a)) is defined by :

a N
o= Pize), wize) =Y X @ue), 1)
€ r=1

where the function x{") is equal to 1 if the position vector x is inside
phase r (i.e. = € () and zero otherwise.

The relations (1) can be used to describe several constitutive mod-
els, including deformation theory of plasticity, in which case £ and &

Stress, O

Le)

] ; 0

0 Strain, & Strain, &

(b) Secant and tangent
moduli Ls and Ls.

{(a) Strain and stress
potentials w and .

Pigure 1 Constitutive relation.

are identified with the infinitesimal strain and stress, respectively. The
relation applies equally well to viscoplastic materials, in which case the
associated deformations are finite and £ and o are associated with the
‘Bulerian strain rate and Cauchy stress, respectively. A commonly used
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form for w'") is the isotropic, incompressible power-law form

() +1
wm(e) = 2% (Ej)m , @)

m+1 \ &g

where m is the rate-sensitivity parameter, such that 0 <m <1, crgf) i
the flow stress, £y is a reference strain rate, and €, is the equivalent von
Mises strain or strain rate.

Making use of the symbols {-) and (-}{) to denote volume averages over
the composite () and over phase r (Q(")), respectively, we determine
the effective behavior of the composite by the effective energy function

. N
W{e) = jnf (w(w,e)) = Elggz " (w7 (€)™, (3)
. r=1

where the scalars ¢ = (x{"}) denote the volume fractions of the given
phases and X denotes the set of kinematically admissible strains g, such
that there is v with £ = %(Vv + V'UT) in €, v = gx on 9. Thus,

W physically corresponds to the energy stored in the composite when
subjected to an affine displacement on the boundary with prescribed
average strain £ = (¢). It can be shown (Hill (1963)) that the average
stress @ = (o} is then related to the average strain 2 via
oW
3. HOMOGENIZATION VIA LINEAR
COMPARISON COMPOSITES

In this section, a brief introduction is given to the “linear comparison
composite” methods. A linear composite is introduced with potential

N
wo(m,s)%e-m(m)s, Lo(z) = Y " (=)Ly, (5)
r=1

where the L((Jr) are symmetric, positive definite, constant tensors.
Following Ponte Castafieda {1996b), we make use of the basic result
that

inf {#(z) +9(z)} > inf (7(2)} + inf {o(=)}, (6)

where the assumption has been made that the functions (or functionals)
f and g are bounded below within the set A.
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Noting that under the hypotheses associated with expression (2) the
function {wo — w) is bounded below, and applying the result (6) to the
function wy = w + (wy — w), we find that

inf (uo(a,€)) > ot (w(z,e)) + pf (wolz, ) ~w(@.)), ()

and therefore that

W(E) < WolE) - inf (wo(z, £) — w(z,€)). (8)

where Wo is the effective potential associated with the linear elastic
comparison composite with local potential given by (5):

N

— | ~

Wa(2) = i =i _Ef e . LW = 25 . LoE.
o(2) ég}fc(%(:ﬂ,s}) Elgfczr:lc {e-Ly’e) g-Log. (9)

Here f.-u is the effective modulus of the linear comparison composite.
Next, relaxing the constraint in the second term on the right of expres-
sion (8), we arrive af '

W (g) < Wo(®) — inf (un(,€) - w(=,€)). (10)
Observing that this result must hold for any choice of the tensors Lg},
and bringing the infimum over ¢ inside of the averages, we find that

N
Wi i WaE = S el ) My L. ol (el?) )
W(E) < Lgﬂio {Wo(s} ;c éx(1£ [wu (V) — W' (e )]} . (11)

It is noted that if the phases of the nonlinear composite are isotropic,

the optimal choice of the comparison moduli LET) is also isotropic with
bulk and shear moduli ﬁgr) and IJE)T): respectively.

Expression (11) is the bound first proposed by Ponte Castaneda (1991)
in the context of nomlinear composites with general isotropic phases.
A generalization for polycrystals was given by deBotton and Ponte
Castafieda (1995). When it is used in conjunction with the upper bound
of Hashin and Shtrikman (1963} for fo, the bounds of Talbot and Willis
(1985) are recovered. However, there are pathological cases (not includ-
ing the standard models of plasticity) for which the bounds generated by
the Talbot-Willis procedure are superior (see Willis (1992); Talbot and
Willis (1992)). On the otber hand, the result (11) can be used together
with any other bound (e.g. three-point bounds) or estimate (e.g. the
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self-consistent estimates) for linear compaosites to generate correspond-
ing estimates for nonlinear composites. For example, Ponte Castaieda
(1992) used this procedure to compute three-point bounds. In addi-
tion, for the special case of power-law composites, an alternative, but
equivalent, form has been given by Suquet (1993) using Haélder-type
inequalities. The result is given by

— a7 = BEL N () % 2
W(€) < inf Mﬁ_ Z ) _3@_2 . (12)
,u((}r)>0 {m + 1) 2 2(0-((]r))m

The effective constitutive relation for the nonlinear composite is obtained
by making use of expression (11) for W in expression (4) and enforcing
the optimality condition in the variables Lg—) to obtain

F = LyE. (13)

This means that the effective constitutive relation for the nonlinear com-
posite is precisely the same as that of the linear comparison coruposite,
where the local properties of the linear comparison composite are deter-
1:nined as the solution of the procedure (11) for the optimized variables
Lg}. Clearly, since these variables depend on the applied strain &, the
above relation is nonlinear in this variable, as expected. It is emphasized,
however, that the microstructure of the linear comparison composite is
identical to that of the nonlinear composite,

Finally, it is noted that the optimal choice of the variables Lgr) can be
given an interpretation in terms of the second moment of the strain field
in the linear comparison composite. Full details about this derivation can
be found in Suquet (1995), Suquet (1997), Ponte Castafieda and Suquet
(1998}); therefore, we limit ourselves here to simple heuristic arguments
when the phases are isotropic.

The condition for the optimal choice of the variables e{} in the inner
infimum problem in (11) is given by

Swl™)
e

which physically means that L(()r) should be chosen to be the secant mod-
ulus tensor L§’J of nonlinear phase r (Fig. 1(b)). Assuming stationarity
with respect to L(()r), we generate the condition for the optimal choice

of these variables by substituting the expression (9} for Wy in (11) to
obtain

(g_-(")) = Lg”)g(r) , (14)

e g al) = (e® e)(") ) (15)
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In other words, the modulus L((Jr) of phase » in the linear comparison
composite is the nonlinear secant modulus evaluated at some “effective”
strain &) defined through. relation (15), where the right-hand side is
the second-order moment of the strain field over phase r of the linear
comparison composite. It is emphasized that the expression (15} may
not be satisfied in general. However, Suquet (1995) has remarked that,
for the case of isotropic phases, this tensorial relation is not needed and
that the optimal linear comparison composite can be defined using the
second moment of the von Mises strain (£2)"). The more general case
was considered in Ponte Castafieda and Suquet (1998) by making use of
a suitable extension of the above ideas.

The important point to retain here is the following. As mentioned ear-
lier, many attempts have been made to estimate the effective behavior
of nonlinear composites in terms of the effective behavior of linear com-
parison composites—in particular, making use of secant-type approxi-
mations. However, because the strain field in the composite is highly
nonuniform, it is not obvious what strain to use in the evaluation of the
secant moduli for the phases of the linear comparison composite. In the
past, ad hoc prescriptions have been tried, mostly making use of the
average, or first moment, of the strain field in the phases of the compos-
ite. Expression {11) shows that the best choice—within the context of a
rigorous variational principle—is the second moment of the strain field
over the phases. As will be seen in the next section, this approach gives
much better results than the classical schemes. It should be noted that
Buryachenko and Lipanov (1989) were apparently to be the first to use
second-moment type quantities in the context of their “multi-particle
effective field scheme.”

However, as already noted in the Introduction, the estimates (11}
are not able to recover the perturbation estimates of Suquet and Ponte
Castafieda (1993) for weakly inhomogeneous nonlinear materials, which
are exact to second order in the heterogeneity contrast. This is in con-
trast with the Hashin-Shtrikman and self-consistent estimates for lin-
ear composites, which are known to be exact to second-order in the
contrast. A homogenization method that has the capability to recover
small-contrast results exactly to second order in the contrast was intro-
duced recently by Ponte Castafieda {1996a). A full derivation of this
result cannot be given here, but the result can be stated succinctly as

W (g) = icm {w(r) (gfr)) n % o). (g_g[f)) } (16)
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where p{m = 3w() /3e(e)), and £ = {€)) is the average of the
strain field over phase r in a linear thermoelastic composite with phase
7 defined by the constitutive relation

o =p" + L (E _ E(r}) 1 (17)
where the modulus tensor L((Jr) is defined by

) Falr)
Ly" = dede

It was shown by Ponte Castafieda and Willis (1999) that this “second-
order” procedure follows from suitable approximations in the context of
a rigorous variational principle. However, the principle is only stationary
and therefore leads only to stationary estimates and not to bounds. It
is further noted that this procedure leads naturally to the choice of

the tangent modulus tensors LET) (Fig. 1(b)) for the linear comparison
composite. But these should be evaluated at the phase averages of the
strain—not at the second moments. As will be seen later, although the
second-order estimates are not bounds, they are complementary to the
bounds discussed earlier and appear to be more accurate.

Other recent developments in the field of nonlinear composites, which
will not be reviewed here for lack of space, include the computation
of the “hard” bounds by Talbot and Willis (1997), who made use of
suitably chosen nonlinear comparison composites; bounds on the strain
fields (as opposed to the energies) by Milton and Serkov (2000); an
affine procedure due to Masson et al. (2000) that is closely related to
the second-order method, but that also works for elastic-viscoplastic
composites; new self-consistent estimates for polycrystals (Bornert and
Ponte Castaiieda (1998), Nebozhyn et al. (1999} and Gilormini et al.
{2001)) showing dramatic improvements over the classical estimates;
and applications of the second-order method in finite clasticity (Ponte
Castafieda and Tiberio (2000)), where the relevant potentials are non-
convex, leading to the failure of other methods.

(). (18)

4. SAMPLE RESULTS

Sample results are presented here for various special cases, including
particle-reinforced composites and porous metals. For simplicity, all
constituents are assumed to be governed by relation (2) with the same
exponent m, but with different flow stresses crér). The microstructures
are assumed to be statistically isotropic, so that the effective potentials
W of the nonlinear composite are isotropic functions of the (traceless)
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strain Z, thus depending only on its second and third invariants. They
can therefore be written in the form

W(E) = EL&“(_“”) (E_‘i)rrhq1 _ (19)

m+1 Ep

where the effective flow stress &g is seen to be a function of the plastic
phase angle w, which in turn is related to the two invariants of € through
the relation cos(3w) = 4det(Z)/£2. Note that the extreme values of the
variable w correspond to uniaxial tension (w = 0) and simple shear
{w = 7/6). Some of the results presented here are for twq—dimel{si_ona.l
composites with transverse isotropy subjected to plane-strain cond;tions,
in which case a result analogous to (19) is generated, but where Fhe
equivalent strain £, has been suitably redefined. The corresponding
effective flow stresses & are constant (independent of ) in this case.

In the figures and discussion below, the following abbreviations will
be used for simplicity: Hashin-Shtrikman (HS), self-consistent (SQ),
upper bound (UB), and lower bound (LB). Similarly, thf: following
terminology will be used: “Variational” refers to the relation {11) of
Ponte Castafieda (1991), or, equivalently, for power-law materials, rela-
tion (12) of Suquet (1993). “Second-order” refers to relation (16) of
Ponte Castafieda (1996a). “Incremental” refers to the procedure first
proposed by Hill (1965), in the form developed by Hutchinson (1976) for
power-law viscous materials. “Secant” refers to the classical secant pro-
cedure, used by various authors, starting with Chu and Hashin (1971}.
“Tangent” refers to the procedure first proposed by Molinari, Canova,
and Ahzi (1987) in its full anisotropic form (no further approximations).
“Voigt™ and “Reuss” will be used to denote the classical microstructure-
independent upper (uniform strain) and lower (uniform stress) bougds.
Finally, FEM and FFT will be used to denote the the results of the finite-
element method and fast-Fourier-transform simulations of Moulinec and
Suquet (1998), Michel et al. (1999), and Michel et al. (2000).

4.1. Particle-reinforced composites

In Fig. 2, the variational HS UB and the second-order HS estimate are
compared against the classical Voigt UB and Reuss LB, the incremental,
secant, and tangent procedures, and the FEM simulations of Michel et al.
(1999) for two-phase, isotropic, rigid ideally plastic composites with 15%
concentration of the harder phase, subjected to uniaxial tension. The
effective flow stress &y is thus plotted as a function of the flow siress
ratio of the two phases. It is emphasized that the FEM simulations are
for composites with periodic microstructures and cylindrical unit cells,
while all the HS estimates correspond to random microstructures with
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Figure 2 Rigidly reinforced, ideally plastic composites with statistically isotropic
microstructures: Influence of the heterogeneity contrast.

overall isotropy. Therefore, the HS and FEM estimates are not expected
to be in good agreement for general values of the volume fraction of the
reinforcing phase. (In particular, the FEM predictions will not lead to
exactly isotropic behavior.) However, for small enough volume fractions,
the HS estimates would be expected to be in good agreement with the
FEM simulations and hence the comparisons shown the figure at 15%
concentration are considered to be meaningful.

The main observation in this figure is that the second-order HS esti-
mate gives the best overall agreement with the FEM simulations, even
at large contrast (within 1%). The variational HS result, which is an
upper bound for all other HS estimates, is satisfied by the second-order
and tangent estimates, but not by the secant and incremental estimates.
However, the tangent prediction in this limiting case agrees exactly with
the Reuss lower bound, which is believed to be too soft. In conclu-
sion, for this extreme nonlinearity, essentially all the classical schemes
break down and we are left with the variational bound and second-order
estimates, which are complementary to each other and can be used to
estimate the effective behavior of the composite fairly accurately.

4.2, Fiber-reinforced composites

Figure 3(a) depicts a comparison between yield surfaces computed
with the variational procedure using the HS lower bounds to estimate

Nonlinear composites and microstructure gvolut:'on 263

6.0
4.5 *
= — VE él:lS)
o redic-
633 0 aum‘,%(z:= 5 gons
— 3
|g F—Bha.ﬂ\sa\ o Compu_
5 oo o= 20 tations
1. \\\
0CI Q0.5 1.0 1.5
o of®

{a) Comparison of yield surfaces
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Figure 3 Effective flow surfaces and deformation maps for fiber-reinforced compos-
ites.

the properties of the linear comparison composite (continuous }ines) alnd
FFT simulations {various symbols) for generalized plane strain l_oadmg
of a fiber-reinforced, ideally plastic composite. The fibers, whlch_ are
aligned in the out-of-plane direction, are taken to be 2, 5, and 10 tm}es
stronger than the matrix. The horizontal axis (&) corresponds to in-
plane shear loading of the form &:{e; @ e; — 2 ® ep), and the vertical
axis {73) to out-of-plane axial loading. It can be seen .tha,t tllle agI:eemgnt
between the analytical predictions and the FFT simulations is quite
good, at least in qualitative terms. The variational proce@ure is able
to capture the “bimodal” character of the yield surfaces, which has also
been observed experimentally (Dvorak and Bahei-El-Din (1987)}. ‘
Figure 3(b) presents strain intensity maps for transverse shear lqadmg
(773 = 0) of the plastic composite. Note that the microstructure in the
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FFT simulations is taken to be periodic, with 64 fibers thrown at ran-
dom in the unit cell. The shear bands (white lines) that develop through
matrix channels between the hard fibers (black circles) are the source of
the relatively “weak” behavior in this mode of deformation. For com-
parison purposes, results are also given in Figs. 3(c) and (d), for the
same mode of deformation in linear elastic composites with the same
microstructure and shear moduli ratios of 6 and 100, respectively. It
is interesting to note that while strain intensification is also observed in
the regions of close proximity between the fibers, shear bands going from
one end of the specimen to the other end are not observed. It may then
be surprising that the variational procedure, which uses the solution of
a linear elastic problem to estimate the effective behavior of the non-
linear problem, does so well, in particular, capturing the strongly non-
linear “fat” sector on the yield surface. However, the important thing
to remember here is that the variational principle is designed to select
the optimal properties of the linear comparison composite to model as
accurately as possible the effective behavior of the nonlinear composite,
which is characterized in this case by the effective yield surfaces.

4.3. Effect of the third invariant:
Particle-reinforced composites

In this section, the effect of the third invariant of the loading, as mea-
sured by the plastic angle w, on the effective flow stress of two-phase,
ideally plastic composites with overall isotropy is considered. Thus, in
Fig. 4(a}, a comparison is given between the variational and second-order
procedures, used in conjunction with the HS lower bounds for the rele-
vant linear comparison problem, and the FFT simulations carried out by
Moulinec and Suquet {(unpublished) for “quasi-random” microstructures,
as defined by the unit cell with 15% reinforcement shown in Figure 4(b).
The FFT simulations show dependence on w, as expected from general
considerations. This dependence is also captured by the second-order
procedure quite well near the axisymmetric end (w = 0) and less well
near the pure shear limit (w = 7/6), where it tends to the flow stress of
the matrix. The variational HS estimate is independent of w, but on the
other hand provides an upper bound for the effective flow stress.

Figures 4(c} and (d) provide deformation maps in the FFT simulations
for the two extreme cases, axisymmetric tension and pure shear, respec-
tively. As can be seen in the transverse diagonal planes highlighted in
the figures, the deformation is distributed more uniformly in the matrix
for axisymmetric tension, while it tends to become localized on shear
bands passing through the matrix for pure shear, thus elucidating the
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(c) Deformation map {d) Deformation map
for axisymmetric tension for pure shear

Figure 4 Rigidly feinforced, ideally plastic composites with statistically isotropic
microstructures: Influence of the third invariant of the applied stress.

physical source of the dependence on the third invariant for strongly
nonlinear composites.

4.4. Cellular microstructures

In this section, two-phase composites with transversely isotropic cel
lular microstructures, subjected to plane strain loading, are considered.
Comparisons are shown in Figs, 5(a) and (b) between the predictions
of the second-order procedure, using the SC estimates for the linear
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comparison composite, and FFT simulations for composites with ran-

5 T L T T 2.5 T T T
i oy _ M _
m=02, %=5 D =025, g 2D
o FFT: random
5 4% FFT: Random 1 distibution of cells
(g) distribution of cells 2r
ol a,
3E 1 Second-order SC
Second-order SC %o
1.5 ]
2 - M
Second-
order HS
FFT: Hexagonal array
1 : ‘ 1 . . ‘ i
0 0.2 0.4 0.5 0.8 1 0 0.2 0.4 0.6 0.8 1
1)

c m
(a) Dependence of flow stress (b) Dependence of flow stress
on volume fraction on rate-sensitivity parameter

(¢) Unit cell for random (d) Deformation map for a plastic matrix
distribution of hexagons and reinforcement 5 times as strong

Figure 5 Two-dimensional composites with cellular microstructures: Effect of vol-
ume fraction and nonolinearity. ’

dom distributions of hexagons defined by unit cells of the type shown
in Fig. 5(c) (25 configurations were used; the circles denote the aver-
age value, and the error bars the maximum and minimum values). It
is known from earlier work in the context of linear elastic composites
that these microstructures are well approximated by the self-consistent
model, at least at finite heterogeneity contrast. It is thus seen in Fig. 5{(a)
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that the second-order SC estimates predict with fair accuracy the depen-
dence on volume fraction at this moderate level of nonlinearity. (The
results are not as good as the nonlinearity increases for intermediate
values of the volume fraction.) Similarly, Fig. 5(b) shows relatively
good agreement even at infinite contrast and high values of the non-
linearity (m tending to zero), for a volume fraction of 25% of the rigid
phase. (Also shown in this figure are the corresponding second-order
HS estimates, which are compared with periodic FFT results for a per-
fect lattice consisting of a hexagonal distribution of rigid hexagons in
the matrix material.) Finally, Fig. 5(d) shows the deformation maps
for the configuration defined by Fig. 5(c)} with an ideally plastic matrix
and reinforcement phase 5 times as strong, (The soft phase is shown in
black in Fig. 5(c).} Note, once again, that shear bands develop passing
through channels of the weaker phase.

4.5. Microstructure evolution in porous
materials

In forming processes involving porous metals, for example, the strains
are large enough to cause the microstructure to evolve as a function of
the deformation. An isotropic porous plasticity model that has been
shown to work extremely well under nearly hydrostatic loading condi-
tions was proposed by Gurson (1977). However, for processes involving
lower triaxiality conditions, such as rolling and extrusion, the material

is expected to develop anisotropy, even if its initial state is isotropic.

An anisotropic model, which is based on the use of the HS variational
estimates of Ponte Castafieda (1991) and Michel and Suquet (1992) for
porous media, was proposed by Ponte Castafieda and Zaidman (1994)
and Kailasam et al. (2000) to account for the evolution of pore shape
and orientation.

In Fig. 6, a comparison is made between the predictions of the aniso-
tropic model of Ponte Castafieda and Zaidman (1994) and finite-strain
FEM simulations for a periodic composite with axisymmetric unit cell,
as depicted in the figure. In addition, the predictions of an extension of
the isotropic Gurson model, due to Girdjeu et al. {2000), for a power-
law viscoplastic matrix material are also shown. The initial porosity is
fo = 1073, the strain-rate sensitivity is m = 0.2, and uniaxial tension is
applied with triaxiality X = 1/3. It can be seen that the predictions of
the anisotropic model—in contrast with those of the isotropic model—
are at least in qualitative agreement with the FEM simulations at this
level of triaxiality. In particular, the anisotropic model captures not only
the evolution of the average shape of the voids (w"), but, in addition,
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(a) Finite-strain FEM simulations for a periodic composite
with axisymmetric unit cell
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(b) Evolution of the axial stress 33, porosity f, and average pore shape w”
as functions of the applied strain £33.

Figure 6 Porous materials subjected to uniaxia! tension.

-

also predicts the gentler increases in the porosity f (which is found to
saturate at large enough strain 33), as well as the overall hardening of
the porous material (positive slope in the uniaxial stress—strain relation,
as opposed to the negative slope predicted by the isotropic model). Anal-
ogous observations have been made for other low-triaxiality situations,
including uniaxial compression, where the snisotropic model is found to
predict full densification at around 70% strain, which is in much better
agreement with numerical and experimental evidence than the value pre-
dicted by the Gurson-type models (around 250% strain). On the other
hand, it should be emphasized that the Gurson-type models give the
most accurate predictions for high triaxialities.

Finally, in Fig. 7, coutour plots are given (Kailasam et al. (2000))
for the distribution of the porosity predicted by the enisotropic and
Gurson models, as well as for the pore aspect ratios predicted by the
anisotropic model, in a disk compaction experiment (Parteder et al.
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(d) Out-of-plane pore aspect ratios according to the anisotropic model

Figure ¥ Compaction of a tapered disk with a height reduction of 37.5%.
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(1999)). The initial porosity of the tapered axisymmetric disk (only one
quarter of the cross-section of which is shown) is f3 = 15%, and the
macroscopic height reduction is 37.5%. The main observation in the
context of this figure is that the porosity reduction predicted by the
enisotropic model (Fig. 7(a)) is considerably larger than that predicted
by the Gurson model (Fig. 7(b)). More specifically, the size of the region
where the porosity is less than 1% (inner dark region) is much larger
for the anisotropic model than for the Gurson model. Also, in this
region, the anisotropic model predicts that the pores have become nearly
flat (i.e. they have become cracks) and are aligned with the horizontal
direction (Fig. 7(c) and (d}). For more details on these simulations, the
reader is referred to Kailasam et al. {2000).

5. CONCLUDING REMARKS

In this review, two nonlinear homogenization methods have been
briefly described, the main ingredient in both being the use of linear com-
parison composites in the context of suitably designed variational princi-
ples. Their predictions for various types of composite material have been
compared with the corresponding predictions of the classical schemes, as

well as with numerical simulations. It is found that the “second-order” -

method, which makes use of the tangent moduli evaluated at the aver-
age strain in the phases, usually leads to the most accurate estimates,
while the less accurate “variational” method, which makes use of secant
moduli evaluated at the second moments of the strain, gives rigorous
bounds. Thus, in some sense, they provide complementary information.
The main advantage of these methods is their relative simplicity and
computational efficiency. Explicit (or nearly so} expressions are available
for most of the cases considered here, including rigidly reinforced com-
posites and porous materials—see Ponte Castafieda and Suquet (1998)
for the most comprehensive set of results. These results compare favor-
ably with FEM and FFT simulations, which, while very accurate for the
specific configurations chosen, are much more computationally intensive.
It is important to emphasize that, by their very nature, these homoge-
nization methods cannot be more accurate than the estimates that are
used as input in the computation of the effective behavior of the relevant
linear comparison composites. Thus far, reasonable accuracy has been
achieved for composites that are modeled well by the Hashin-Shtrikman
and self-consistent approximations. More accurate estimates, incorpo-
rating higher-order statistics, are likely to be needed for other types of
microstructure and for improved performance. Concerning the nonlinear
schemes themselves, improvements are still needed to be able to handle
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the most extreme circumstances, usually involving very highly nonlinear
behavior.
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