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Introduction

Fifty years ago, the term ‘‘continuum mechanics’® was not
widely used. A significant emphasis on continuum mechanics
could be found in the postwar literature with Rivlin’s and
Truesdell’s pioneering works. A few years later, it became
clear to most scientists involved in this new field that ther-
modynamics should play a central role in continuum
mechanics. If one may say that the importance of continuum
mechanics significantly increased during the 1950s, one may
assert that it is during the 1960s that continuum ther-
modynamics began to be a popular topic attracting the at-
tention of numerous people.

Quite a number of great scientists had already introduced
“‘continuum thermodynamics’ in their work without using
the word: for instance, Lord Rayleigh for viscous flows and
Lord Kelvin for the thermoelectric effect. Special mention
should be made of Duhem’s work [1] which demonstrated a
very clear view of the role of thermodynamics in continuum
physics. At the time, his main ideas did not receive the at-
tention they deserved. They are nevertheless present in
Jouguet’s and Roy’s works. Other examples may be given in
the field of chemistry: de Donder’s work and the fundamental
results of Onsager and Casimir provided the foundations on
which the thermodynamics of irreversible processes (TIP) was
built. The expansion of continuum thermodynamics in the
1960s is evidenced not only through the number of situations
that have been considered but also by the widespread desire to
deal with the field in its full generality, to exhibit the basic
assumptions as well as the significance of the concepts in-
volved, and hopefully, to derive methods that could be ap-
plied to any physical situation.

The expansion of continuum thermodynamics has raised
many controversies during the last 20 years; they still persist
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at the present time'. A first line of thought, referred to as
“‘rational thermodynamics,’’ asserts that the introduction of
thermodynamical concepts into the field of moving con-
tinuous media requires a complete rethinking and refor-
mulation of classical thermodynamics which is primarily
concerned with systems in equilibrium. A second line of
thought maintains that the concepts should not be drastically
changed. The former criticizes the lack of ambition and of
intrepidity of the latter; it prefers to think of ‘“‘entropy’’ and
of “‘absolute temperature’’ as basic concepts similar to that of
““forces’ in dynamics. The second argues that these concepts
have no physical content outside equilibrium and its neigh-
borhood. Such important questions will receive some at-
tention in the present paper but we will not take side in the
controversy. It is, in our opinion, a new example of the
diversity of preferences: on the one hand, the need for a clear
and rigorous mathematical formulation, and on the other
hand the desire to remain in close contact with physical
reality. We prefer to emphasize what we consider to be the
main objective of continuum thermodynamics, i.e., the
construction of models® that are as simple as possible and
which can:

(i) explain the qualitative behavior of various ex-
perimentally observed phenomena;

(i) give rise to a quantitative evaluation which may be
. compared to measurements;

allow one to formulate well-posed mathematical
problems and to study the solutions together with
their evolution and stability for varying data.

(iid)

To conclude this introduction we will briefly describe the
main parts of the paper. The first section is devoted to the

"'See for instance the recent discussions in the Bulletin of the Institute of
Mathematics and Applications. References to these discussions are given in [2].
We emphasize that we are concerned with models; we do not claim for them
a universal validity.
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basic equations. Section [ is concerned with the concepts
connected with the generalization of the second law. It will
provide the opportunity to mention a few important questions
and answers formulated in the spirit of rational ther-
modynamics. Section [1I describes the method of the ‘“‘local
accompanying equilibrium state’ (l.a.s.) which will be used
later in its most convenient version, i.e., when the constitutive
equations may be obtained from two scalar valued convex
functions: a thermodynamical potential and a
pseudopotential of the dissipations. Some classical ap-
plications, mainly in solid mechanics, are given in Section IV
The concept of global state variables is introduced in Section
V¥, and its interest is illustrated in relevant examples. Section
VI, which is devoted to homogenization® and ther-
modynarmics, provides some insight into the consistency of
the l.a.s. model and into its physical interpretation by
exhibiting the relations between descriptions at the microlevel
and at the macrolevel. Finally, a few elements of bifurcation
and stability theory are given in Section VII. They show that
the model emphasized in this paper provides a first significant
contribution toward what was called the third main objective.

I Basic Equations of Thermodynamics

1 A Few Remarks About Classical Thermody-
namics. Classical thermodynamics is concerned with
systems in equilibrium which usually may be characterized by
a finite number of scalar quantities which define the state & of
the system. Any thermodynamical property of the system is
by definition represented by a function defined on the space V'
of states.

Classical thermodynamics exhibits properties that can be
associated with any thermodynamical system as consequences
of a few statements or laws: the empirical temperature @ by
the ‘“‘zeroth’’ law; by the first law, the internal energy E and
the heat received by the system in a transformation or process
between two states after interaction with the surroundings.
Reversible processes may be represented by an arc drawn on V
and all the thermodynamical functions attached to any point
L of this arc have their usual physical significance. Con-
sequently, the differential dE of E is the sum of two dif-
ferential forms, the elementary work and the elementary heat
received by the system during an elementary reversible
process.

The second law has received a remarkably large number of
forms, and discussions still continue to decide which one of
these forms is optimal. Carathéodory’s formulation rests on a
statement of ‘‘inaccessibility’’ by adiabatic processes. It is
then possible to prove that there exists a universal (absolute)
temperature 7 and a universal entropy S such that 7'd S is the
elementary heat received in a reversible process. Moreover,
for an adiabatic process £, — E,, it may be shown that S(L,)
= S(I)).

Some people say that classical thermodynamics has to be
called thermostatics because it deals only with equilibrium
states. Others disagree, noting that time is in fact implied in
most of its classical definitions; namely it is true that the
statement ‘‘such a system is in equilibrium’’ and the choice of
the variables that characterize its state I depend on the
characteristic time which is of interest for the observer. The
work thermostatics is adequate if one restricts its use to case
where all the properties associated with a state L of V—like E,
S, and T for instance—have their full physical significance.
The following example which gives a first idea of what will be
called internal variables shows the nuance that may be in-
troduced. Take a system [3] whose states L may be defined by
E and deformation variables X;. A continuous process (with
time) may have an image on V—it is possible to define E(¢),

3H0mogenization is the modeling of a heterogeneous system by a con-
tinuum.
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X, (1), and then S(7). Generally, the function S(Z) will have
no significance for such a process. But it may happen that this
same process may be considered as a reversible one, when V'is
embedded in a ““larger’’ space 7. The process may be looked
upon as a thermodynamic one on ¥ and as a thermostatic one
on V. Internal energy has the same significance (although
different analytic expressions) in ¥ and in ¥; entropy may be
defined only in ¥, and §(E) has nothing to do with S(E).

2 Basic Equations. We consider now a continuous
material system £ in motion with respect to an inertial frame
R. The basic equations express the laws that fully describe the
physical system independently of the special properties of the
material. They always include the conservation laws of mass,
momentum, and energy and when only thermomechanical
interactions are involved, as is usual in classical continuum
mechanics, these conservation laws are the basic equations. A
conservation law is symbolically written for any subdomain D
of Qas: 4

ESD@deLD Jy do— Su wq dv=0 (€))
As is well known, [4], for a three-dimensional domain:

A is the quantity (a vector or a scalar) that is conserved per
unit mass and A = p A the quantity per unit volume; d/df or
() means the material derivative;

J 4 is the associated flux (per unit area and per unit time);

@4 is the supply (per unit volume and per unit time) that
represents the action of the surroundings of @ (¢4 = p S4);

As a consequence:
J 4 is linear in » (outer unit normal to D), J, = j4 . n,
J 4 being the associated flux tensor or vector;

At each point of €, the following equation holds:
—pa=0 2

At each point of a surface of discontinuity inside , a jump
relation may be written.

The conservation of energy is the natural extension of the
first law of thermostatics; differences are replaced by material
derivatives, work by power, heat by heat rate and kinetic
energy is taken into account. The material derivative of the
kinetic energy of D may be eliminated by application to the
real motion of the virtual power statement and, consequently,
the power P, of external forces on D disappears. Heat rate
on D may be assumed (as P(,) to be the result of an
associated flux Jy and of a supply ¢g. Finally, the equation
(2) for energy may be replaced by:

pé=cg +div jo+eg, 3)
where e is the internal energy per unit mass, €, the opposite
of the power of internal forces (per unit volume) or the energy
(per unit volume) due to internal forces. In (3) all the
quantities involved are objective or frame indifferent.

(0 1In classical continuum mechanics for an Eulerian
representation

pA+div j,

JQ:_q’ §0Q=r, E(,'):fr(ﬂ'.D) (4)
with D, the strain rate tensor or the symmetric part of the

velocity gradient, and the conservation laws are symbolically
written:

Q@=pA Ja va=pS,
Mass p 0 0
Momentum pU —a
1,
Energy P e+—2-v qg—a.v fo+r
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In a Lagrangian representation (x; orthonormal Eulerian
variables, £, orthonormal Lagrangian variables), the motion
is described by:

Xi=¢; (X4 1) I, a=1,2,3 (5)

A conservation law is written on a fixed domain in the
reference configuration R: A, S, can again be used; but mass-
density 5 (mass per unit volume of R), quantities per unit
volume of R, flux vector or tensor j, have to be changed in
order to obtain an equation similar to (2). Similarly, in the
Lagrangian version of (3), one has to write:

©)
with ¢ the (second) Piola-Kirchhoff stress tensor and L the
Green-Lagrange strain tensor.

(i)  When electromagnetic interactions have to be taken
into account, one must include in the conservation laws the
electromagnetic effects in the flux and supplies of momentum
and energy, but also include among the basic equations the
Maxwell equations, see for instance [5]*.

(fify Mixture of fluids is another example which requires a
refined description. Let us introduce a balance equation,
similar to the conservation law (1) but including a production
term on the right-hand side:

d . .
E‘ED(de+SaDJB.nd—SDwB a‘v—SDCB dv

The supply ¢z comes from the surroundings of {2; on the
contrary B8* = p B* is produced inside the system, and B* is
the rate of production per unit mass. The equations of balance
of each constituent (A = 1,2. . .») of the mixture are sym-
bolically written (no summation with respect to A):

E‘(J;):fr(f.L), p_lf(f)=ﬁ_lé(j)

)

®=pB /B g ®*=pB*
A 0 0 T
PR — 7 s
1
p}\ [9)\4’ ? (U?\)Z] (]?\*U;\ . I)}‘ F)\+_f)\. u?\ !?\

Conservation laws for the mixture as a whole implies:

v »
™ =0, E mh =0,
A=1 A=1

These global conservations may be written as previously with
the following definitions:

v

Y, r=o0

A=1

(8)

p= 1 0% b= 100 0N, W=ty )
A=1 A=1
v 1 ¥
pe= Ep’\[eh-t- £ (u")z:l, o= E (c* —prur@ut) T 9
A=1 A=l
2 1
q= E[q?\+p)\|:e)\+7(u}\)z]uk#g}‘_u}‘] =
A=l

In particular (3) has to be written with ¢o=r==5L}_,
r* + 1 uh).

The u* are the diffusion velocities. If there are p chemical
independent reactions with A*, k = 1,2, . .p, their reaction
rate densities, if ¥ ¥ is the stoichiometric coefficient of
constituent A (molecular weight M, ) in the reaction &, then

2

™= (PEMyp) A
k=1

(10)

4 This paper shows the usefulness of the method of virtual power in dealing
with such complicated situations.
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with 16u the mass of the oxygen atom. Then the p rate den-
sities A¥ determine the » mass production terms 7*.

What are the basic equations for a mixture? Various an-
swers are possible. There is general agreement to accept the
existence of one empirical temperature # valid for the mixture
and for all constituents; then it is natural to write only the
global conservation law of energy. A first choice is to keep as
basic equations the following 4» + 1 scalar valued equations:

o+ ph div or =1

a1

prur —div gd =m* +
pé=trlo.D}—divg+r

Another less refined but more classical choice is to take as
basic equations the » + 4 equations written in (11) after
replacing the » momentum equations (11), by the global
momentum equation.

3 Constitutive Equations. When the basic equations
have been chosen, one must analyze the quantities involved.
Among these quantities, one has to identify those which will
be chosen as principal unknowns (p.u.). Then in order to solve
the problem, the complementary unknowns (c.u.) must be
expressed through laws that describe the properties of the
material: these laws are the constitutive equations. This can be
explained by some examples.

In classical continuum mechanics, one may choose as the
principal unknowns (p.u.) one of the following set according
to the selected representation:

} (12)

[p (xfc ’ f) ’

[o(X,, 1),
The auxiliary unknowns® (a.u.) are the quantities that can be
directly computed from the (p.u.): acceleration v, defor-
mation gradient F, strain rate tensor. . . Looking at the basic
equations, one sees that the complementary unknowns (c.u.)
are:

vi(xp, 1), 0(xg, f)]or

qb!(fa! [)! B(XA) l!‘)]k

le, ¢, 4] (13)

These (c.u.) —say C— must be expressed in terms of the (p.u.)
by the constitutive functions that must fulfill some very well-
known requirements: causality, localization, objectivity or
material frame indifference®, and material symmetry.

If one writes symbolically:

le ,o, gl or

Clt )= F [#(5, 1,005, 0 5] (4
=t

F is a casual functional which depends on the history of the
system up to (and including) time ¢. Note that the basic
equations impose no further restriction on F: whatever be the
values of the (p.u.), whatever be F, one can always check the
equations by a convenient choice of the supplies fand r.

For a mixture of fluids ruled by the (4» + 1) basic equations
(11) the (p.u.) will be:

pM (X, 1), vMxg, 1), B(x, 1) (15)
and, the (c.u.) are:
e, o, g, mh, A¥; A=(1,2.. .0, k=(1,2...p) (16)

If the mixture is described by the less refined description with
v + 4 equations, the (p.u.) and the (c.u.) will be, respectively:

3 As p may be directly computed from the ¢; or from the v;, it is generally
considered as an auxiliary unknown; in such a case mass conservation is not
counted among the basic equations.

8 Frame indifference of the constitutive equations is not always accepted in its
full generality—see for instance [2]. Let us emphasize that the models con-
sidered in the present paper rest effectively on this working assumption. Ex-
perimental studies show that this working assumption may be used safely in
most of the applications met by engineers,
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.0:\9 vh 8; el u)\s a, q: Ak (17)
In each case the constitutive equations must relate the (c.u.) to
the (p.u.) by functions or functionals that fulfill the

aforementioned requirements.

II Entropy, Absolute Temperature, and Fundamental
Inequality

Continuum thermodynamics impose new important
restrictions on constitutive equations when a suitable
generalization of the second law is formulated. The main
objective of continuum thermodynamics is to provide a
method to write constitutive equations that fulfill these new
restrictions.

One may look at this generalization of the second law from
many different points of view. In the following subsections,
we will consider first the case where entropy and absolute
temperature are more or less considered as primitive concepts,
then the case when only entropy is a primitive concept, and
finally we consider attempts to start without such assump-
tions.

1 Clausius Duhem Inequality. The First Version of
Rational Thermodynamics. In classical continuum
mechanics, any time that specific entropy s and absolute
temperature 7 have been defined or are considered as
primitive concepts, everybody agrees to write the rate of
production of entropy ¢* in the form:

pTo*=¢e; +p(Ts—¢é)—q. V(ogT) (18)

when ¢(;) has been defined in (4). Note that no supply is in-
volved in (18). Clausius Duhem inequality, which is an ex-
pression of the second law, says that ¢* and then the right-
hand side of (18) is non-negative.

The first version of rational thermodynamics [6], considers
s and T as primitive concepts. An admissible process is a
solution of the basic equations when constitutive laws are
taken into account, for which the Clausius Duhem inequality
holds. For instance, for simple materials, the (c.u.) are w, s, o,

q (w = e — T s is the free energy) and are expressed as
functionals:
C= 8 {Flhn 0, TUwt), gGat) &)  (09)
1=t

where g = v 7. In order to discover the restrictions imposed
on admissible processes, the expressions (19) are introduced in
(18). Assuming that the F’s are Frechet-differentiable, that
their arguments F, T, and g have time derivatives (at least
right derivatives) and noting that, at each ¢, the values of these
derivatives may be chosen independently, one shows that the
coefficients of these derivatives in the right-hand side of (18)
must be zero. This analysis provides the necessary and suf-
ficient conditions for a process to be admissible.

We must content ourselves here with this general outline
which has been applied successfully with care and rigor to
various cases. General properties have been proved and
classical thermostatics results recovered by an asymptotic
analysis. Such rigorous achievements must be put on the
credit side of this well-founded mathematical theory.

2 The Entropy Balance Assumptions. Following Muller
[7, 8] one may assume only that s—but not 7—is a primitive
quantity which fulfills a balance equation like (7) with B = s,
B* = ¢*. More precisely one assumes that

(a) the rate of entropy production ¢* is non-negative for
admissible thermodynamical processes;

(b) the associated entropic flux j,, like s, is a constitutive
quantity;
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(¢) the supply ¢, is linear with respect to the other supplies
with coefficients that are constitutive quantities;

(d) the normal component of the entropy flux across a
surface of discontinuity I satisfies a conventional continuity
requirement. For instance, if [ . ] denotes the jump of a
quantity and if the systemisatrest[ j,.m ] = 0if[ 6 ] = 0.

From these quite natural assumptions, it is possible to
prove in many cases the existence of the absolute temperature,
to find the precise expression of j; and ¢, as well as the
restrictions on the constitutive equations.

The method to derive these results implies two steps. The
first step is to write that the entropy production ¢* cannot be
negative for fields constrained by the condition that they are
solutions of the basic equation. Liu has shown that one can
get rid of these constraints by the use of Lagrange multipliers
which are new unknown constitutive quantities’. One then
gets an expression for ¢* which must be non-negative
whatever by the (p.u.). Taking account now of the assumed
constitutive equations, the expression of ¢* involves linearly a
number of derivatives of the constitutive variables, whose
coefficients must vanish, because at each ¢ the values of these
derivatives may be chosen independently. The second step is
to use the preceding condition (¢) which allows one to exhibit
the universal character of some quantities and their physical
significance by looking at the simple case of equilibrium.

We must refer to the literature for the details of this
rigorous and quite interesting method; we will only comment
on some applications.

In thermoelasticity [9] the application of the first step leads
to:

S=A0)[é—p " tr (1. L}],

dA
—q. V0=0;

ap 7

here A(#) is the only Lagrange multiplier which is not zero.
The second step leads to the conclusion that A is a universal
Jfunction which is easily identified with 7-'. All the classical
results are recovered.

Js=A(0)q,

An instructive application concerns a mixture of inviscid
fluids. The analysis and the results depend on the basic
equations chosen (see 1.2). If one takes (11), it is convenient to
choose as constitutive quantities: .

AN_— A

€r, 0" = Pk: qr, H?}=mA—TU
instead of (16), with ““intrinsic’’ integral energy e; and heat

flux g, defined by:
v vy 1
per= ), oMM qr=q— ), - P W
A=l A=l

After the first step, one gets the equation that gives p ds in
terms of d(p e;) and d p* and the equations that give the
entropy flux j, in terms of ¢ and u* as well as the supplies ¢,
in terms of /* and r. But, Lagrange multipliers remain in the
coefficients of these equation. Now the second step, when
condition (d) is conveniently formulated for an impermeable
or semipermeable wall for a constituent shows that, again, the
multiplier of the energy equation may be identified with 7!,
and that another quantity has to be continuous for each fluid,
a result that leads to the introduction of the chemical
potentials u}. Let us write some of the results:

" In most cases, it may be proved that they do not depend on the supplies.
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d(pe))=Td(ps)+ Y, ud p*,
p=1
ple;=Ts)= Y, p" w)—p
=]
‘ L o)

Tj,=q,— E ptuju,
A=1

To,=r— i,o’\ ur . A, p= iﬁp\
- A=l

J

These results are very remarkable: Gibbs equation for the
mixture (20); and Gibbs-Duhem equation (20), have been
proved, correct expressions for j, and ¢, have been found. In
the residual inequalities appear all the dissipative mechanisms
producing entropy: heat conduction, chemical reactions,
momentum, and thermal diffusion. This is the starting point
of a complete ‘‘rational thermodynamics’’ of fluid mixtures
developed by Miiller.

A last example, again due to Miiller [10], concerns a single
inviscid fluid whose constitutive equations depend on the
constitutive variables p, 8, 8, V6. It is found that:

js=A(0’ G)Qs QD;:A(Ba G)r

Moreover A (6, ) is a universal function, the coldness, whose
equilibrium value reduces to A(#, 0) = 7! (#). This example
is quite instructive: the absolute temperature concept and the
Gibbs equation in its classical form are only valid for
equilibrium.

3 A Challenge to Mathematicians? What we have called
the ““first’” rational thermodynamics considers entropy and
absolute temperature as primitive concepts. With Miiller, only
entropy was assumed, and it was proved in many interesting
cases that an absolute temperature may be defined. The last
step would be to justify the existence of both concepts on the
basis of a statement comparab'e to the Caratheodory
“inaccessibility’’ axiom for thermostatics. Miiller has again
considered the question in the frame of thermoelasticity and
gave a precise formulation of the challenge: roughly speaking
one has to find a statement that ensures the existence of
certain quantities (entropy flux and supply, Lagrange
multiplier) such that a precise inequality holds for any
solution of the equations of motion [9].

4 Alternative Versions of Rational Thermody-
namics. Recent attempts to develop further the axiomatic
basis of thermodynamics must be mentioned [11], although it
is impossible to give them the developments they deserve.

The basic ingredients are the concepts of ‘‘state’” and
“process,”” like in the Noll’s new conception of continuum
mechanics. Each process P associates to a state o one another
state Po and to each pair of processes corresponds, when it
can be defined, the resulting process of the pair. For the
statement of the laws of thermodynamics, the concept of an
““action” a (P, o) is introduced in order to render precise and
general the idea of “‘an integral along a process.’’ It assigns to
each pair (P, o) a number (the supply of @ in going from o to
Po) with the requirements of continuity with respect to ¢ and
additivity with respect to resulting processes. An action has
the conservation property (alternatively Clausius property) at
g, if for every “‘nearly cyclic’® process P starting at ¢ (and
arriving inside an p-neighborhood of a): la(P, o) < 5 or
a(P, g) < 7. In any branch of thermodynamics, one must
introduce an action ¢ which has the conservation property for
at least one state (first law) and an action § which has the

1014/ Vol. 50, DECEMBER 1983

Clausius property for at least one state (second law). That
provides us with a quite reduced requirement. But in fact it
may be proved (on some natural assumptions) that é (2, o) has
a potential e(c¢) and that §(P, o) has an “‘upper potential’’
5(o). Of course e(o) is the internal energy and s(e¢) the
entropy.

This abstract frame must be fitted in each branch of
continuum mechanics by prescribing how a state and a
process are defined by giving some constitutive functions of
the state and by introducing the two actions é and 5. For
instance, for an elastic element, ¢ is defined by a triplet,
essentially the present values of the deformation gradient, of
the internal energy and of the temperature gradient. The
constitutive functions are the temperature, the stress tensor,
and the heat flux vector. The processes are defined by the
functions of time that appear in equations ruling the
derivatives of the triplet—for instance div j, + ¢p in (3)
which is here considered as a part of the definition of the
process. For an element with fading memory, a state is
defined by the previous triplet and by their past history up to,
but not including, the present time. This new thermodynamics
is also able to include the theory of plasticity [12]. It appears
then as a method for reorganizing the results of a given theory
into a unified and rigorous scheme which permits us to derive
general properties and the thermodynamical restrictions on
response functions, more than a guide to discover a con-
venient schematization in a new field.

A recent paper [13] leads to a definition of the action §
which is more closely related to the earlier considerations of
Clausius, Kelvin, and Planck. It provides us with a new and
interesting way to introduce absolute temperature and en-
tropy in thermodynamics.

IIT The Local Accompanying State Model (l.a.s.)

The model described in the following is in essence very well
known and is developed and commented on in various books
[14, 15] and papers [16], most of them dealing with the so-
called thermodynamics of irreversible processes (TIP).
Nevertheless, its mathematical and physical consistency has
been recently largely improved; it is then worthwhile to recall
quickly some of its main features.

1 Internal Variables, Thermodynamical Potential, and
Equations of State. As was mentioned in /7.1, reversible
processes in thermostatics correspond to a time scale such that
the internal energy and the deformation variables are
adequate to define at each time the state of the system, and
these variables may be independently controlled by the ob-
server. If the time of evolution one wants to consider is
shorter, it is often possible to extend the previous space into a
larger one in which processes can be described by the classical
methods of thermostatics. The additional variables that have
to be introduced, the internal variables, characterize quite
generally dissipative mechanisms; they may change without
changes in the surroundings, and usually the observer is not
able to control their value.

Let us present, somewhat formally, how the model works.
Having in mind a continuum, one uses quantities defined on
each particle: specific internal energy e, variables that describe
the deformation in the adopted—possibly generalized
[5]—kinematical description x = (x;, ..., X,), internal
variables® o = (ay, ..., a,). The main assumption is that
one may attach to any particle a thermostatic system (of unit
mass) defined by (e, x, «), which is significant for the physical
description of the particle. For this ‘“‘accompanying’’ system,
the Gibbs equation may be written:

8 One does not specify here the tensorial character of the x and of the «. For
simplicity they will be considered as scalars.

Transactions of the ASME



T ds"=de— Y, n¢d x; + Xp:Aﬁd oy

i=1 k=1

1)

Generally, the superscript @ will be omitted: then 7 = 7%, s =
s are, respectively, an absolute temperature and a specific
entropy which may be used for the description of the particle.
The conditions under which such an interpretation may be
physically reasonable will be discussed in the following.

Then if one writes e(s, %, «) the specific internal energy
(alternatively w(T, x, «) the specific free energy), one may
express T, 1, A (alternatively s, x, A) as functions of s, x, «
(alternatively 7, x, «). These equations are the equations of
state of the material. Generally, in account of the ther-
modynamic stability requirements, e(s, x, @) = e(¥) is a
convex lower semicontinuous function of its arguments; one
says also a convex closed function in order to recall that the
epigraph of e (i.e., the domain z = e(¥) in the space %, z) is a
convex closed set. Then one may apply all the concepts in-
troduced in convex analysis [4]. The dual function e* (7, 7,
—A) = e*(7) of e, obtained by a Legendre-Fenchel trans-
formation, may be used in order to write the equations of
state in an equivalent way; subgradients may be introduced if
e or e* are not differentiable. With the notation:

" P
@) =T s+ ) mxi+ )y (—A) (22)

i=1 k=1
one may say that ¥, 7 are connected by the equations of state
if one of the following three equivalent statements holds:

e(x) +e*(7) — (x.7) =0, mede(X), Xede* (M) (23)
By definition, if the left-hand side of (23), is not zero, it is
positive. Other thermodynamical potentials, i.e., functions
from which the equations of state may be written with
gradients (or subgradients), may be built from e(%) by a
partial Legendre-Fenchel transformation; that is precisely the
case for the specific free energy.

2 Production Rate of Entropy and Dissipation. Com-
plementary Constitutive Equations. Let us assume, as usual
in classical continuum mechanics, that the entropy balance
equation can be written with 7j, = g, T ¢, = r, i.e., that
Clausius Duhem inequality (18) holds. From (21) one may
write:

é=p Ts+ei

(24)
€ = i: i Xi— i: A= (%) — (A,a)
i=1 k=1
Then (18) may be written:
e —€y—¢. vV (Log)=p To"=d @5

One calls d the dissipation (per unit volume), d; = €, —
ety the intrinsic dissipation, d, = d — d, the thermal
dissipation. By construction e(;, the opposite of internal
power in the real evolution, involves the (generalized) strain
rates which appear in the chosen kinematical description. One
may prove in most cases that they may be chosen as
derivatives of generalized strains (as for instance in (6)) and
we may assume that the x; introduced in the foregoing are
precisely the (generalized) strains. As a consequence e
which is analogous to ¢(;, in the associated artificial reversible
evolution of the accompanying state is, like €(;, linear in the
x;- Consequently (25) may be written:

d=(n",%)+ (4,&) —qg . V(Log T) (26)
Then d has the familiar expression,
d= Y, Y, X, =(Y,X) 27

p=1
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where the Y, stand for the ““fluxes” (x, &, ¢) an X, for the
““forces’’ (n™, A, — v(Log 7).

Going back to 1.3, it is easily recognized that in the l.a.s.
model the constitutive equations are given by the equations of
state and by the complementary constitutive equations which
express for instance the ™, & and q in terms of x, A, and
Vv (Log T) or more generally, which relate the Y and the X.

When the preceding classical assumptions for j, and ¢, are
not valid, the crucial point is to first derive the convenient
expressions for these quantities, and consequently for the
dissipation d, in a way which is consistent with the chosen
basic equations. In each case, ad-hoc methods, which rest on
physical reasoning, are adopted; one then must be careful to
fulfill the consistency requirements, for instance to exclude
the outside supplies from the expression of d. In some cases,
as said before (I1.2), the analysis of Miiller provides a
systematic method to answer these questions. The next three
subsections are devoted to the formulation of the com-
plementary equations (c.c.e.).

3 Classical Model of TIP. TIP originated from the
decisive contributions of Onsager and Casimir and is
presented in many books authored by Meixner and Reik,
Prigogine, de Groot and Mazur [14], Woods [3], and many
others. Quite interesting, stimulating and also critical
discussions may be found in [10] about the statistical foun-
dations, the various branches of physics where it may be
applied, and the impressive set of experiments that support
the validity of the Onsager-Casimir reciprocity relations
(OCRR) which is the basic tool of TIP. These relations say
that, when the *‘fluxes”” Y and the ““forces’ X are linearly
related, the c.c.e. may be written:

M
x= Y1y,

J=1

(28)

where the matrix L; is symmeiric, non-negative’ and may
depend on the thermodynamical variables, and especially on
T and ;. Other restrictions arise from the tensorial character
of the Y and the X, the frame invariance and the material
symmetry.

Such a result requires a proper choice between the ¥ and the
X in the right-hand side of (27). In a specific situation ad-hoc
considerations give the answer and no difficulty arises. For
instance, strain rates, heat flux vector, and rates of progress
of chemical reactions have to be listed among the Y. A
rigorous recipe [3] may be given if one accepts to introduce
the concept of a ““microscopic time reversal’” (mtr) for which
Y - —Y, X — + X (it corresponds to a time interval smaller
than the collision time). One can write (28) if the linearly
related ¥ and X have a definite parity under mtr. Conjugate
linear transformations ¥ — Y’, X — X’ may be applied,
provided (Y’, X’) = (Y, X). The OCRR may also be
generalized when the Y and the X are not dependent but
satisfy some linear constraints [17].

4 The Pseudopotential of Dissipation Model or Standard
Model. In TIP, one may write (28)

m m

a 1
Xt:a—;:! 99='E E ELU Y; Yj—

i=1 j=1

(29)

where ¢(Y) is a quadratic non-negative form. The standard
model presented now is a generalization of (29), when ¢(Y)
is assumed to be a non-negative convex closed function such
that ¢ (0) =0.

This assumption leads to thermodynamical admissible
process because d is consequently non-negative. This
pseudopotential (p.p.) ¢(Y) may, in some cases, depend on

?Then d is necessarily non-negative.
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the thermodynamical variables that have to be considered as
parameters.

Needless to say, other p.p. may be introduced, as men-
tioned for the thermodynamical potentials in I71.1, by a
complete Legendre-Fenchel transformation which leads to
¢* (X)), again a convex closed p.p., or by a partial Legendre-
Fenchel transformation which leads to a saddle (convex-
concave) p.p.. General formulations of the c.c.e. may be
written in a similar way to those in (23) given for the equations
of state. In conclusions, for such a model, all the constitutive
equations of the material can be recast in two non-negative
convex closed functions, the potential e and the
pseudopotential ¢.

The present formulation is essentially due to Moreau [18],
see also [4, 19]. It is impossible here to give an account of all
the contributions which have been useful to prepare this
formulation. Plasticity theory, with its normality rule, played
an important role in order to focus attention on the im-
portance of convexity. A decisive step must be attributed to
Ziegler [20] when he recognized the role of ‘‘dissipation
functions.”

5 General Formulation of c.c.e. Although the p.p.
model can be used to describe a great variety of physical
situations, it does not possess a universal validity. Quite a
general formulation may be proposed by assuming that the X
and Y are functionally related with, possibly, the ther-
modynamical variables as parameters. For instance, for a
dissipation like (26)

7", 6, q=TF (x, A, V (LogT); 7, x, a) (30)

The function F must satisfy the causality, the objectivity
and the material symmetry requirements, and must also lead
to a solution of the basic equations, supplemented by (30) and
the equations of state, for which d is never negative, a con-
dition that was automatically fulfilled in the standard model.

6 Physical Significance of the l.a.s. Model. It is already
known that any rheological model composed of springs, dash-
pots, and gliders is a standard model [21]. Considerations on
rheological models throw some light on the understanding of
two important questions concerning the l.a.s. method: what is
the significance of the thermodynamic potential e? How is it
possible to select the internal variables o?

In order to simplify, one will assume that the x variables
reduce to ¢, strain tensor in small perturbation theory, and
that the system has only elastic stresses (n = o, 7°" = 0). In
essence, the l.a.s. method assumes that a particle in the usual
macroscopic description (M.D.) represents in fact a
microscopic structure or cell which is itself a continuum in the
microscopic description (m.d.). Then e, local value in M.D.,
can be looked upon as the global! internal energy of the
corresponding cell in m.d. (per unit mass). Similarly ¢, local
strain in M.D., can be looked upon as the global/ geometrical
description of the cell. Keeping e and e constant means that
the cell, from a thermodynamical point of view, is isolated.
This cell may be highly heterogeneous and various physical
dissipative mechanisms may be involved in the evolution, each
of them being described by an internal variable «. If one
wants to keep only a finite number of «, one must take into
consideration the characteristic time of the macroscopic
evolution, i.e., of the macroscopic strain rates, say 7y
= e . ¢!, and the characteristic value of the bound of
macroscopic stresses, say o,,. The dissipative mechanisms
characterized by a relaxation time (like for viscosity) of the
same order than r,, must be kept. The rate-independent
mechanisms (like for plasticity) whose yield limits are below
oy must be kept. If one « has a relaxation time much greater
than 7, or a yield limit much greater than g, its value is
considered as frozen and it plays no role in the l.a.s. method.
The « which have relaxation times much shorter than 7,, do
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not appear either because they are considered to have the
equilibrium values, they reach, when the whole system has
been considered isolated with e, €, and all the others « frozen.
Then, the definition of the system associated with a particle,
i.e., the choice of the o,. . .ct, depends on the degree of the
refinement which seems suitable; it is not a well-defined
entity. Consequently T°, s*, n?, A{ in (21) depend on the
choice of the a which have been kept. In particular, in the
l.a.s. model, absolute temperature and specific entropy are
not uniquely defined and have only a relative significance.
When one writes 7 = 7Y and s = s“ as was done in the
foregoing, one assumes that these ad-hoc definitions may
correctly represent what may be called temperature!® and
entropy in a system in motion, which is not in thermostatic
equilibrium [16].

7 Comparison and Connection With the Models of
Rational Thermodynamics. In such a comparison with the
l.a.s. models, the models of rational thermodynamics present
some points of superiority from the point of view of rigor
while the l.a.s. method seems to be more efficient. Rational
thermodynamics does not assume the validity of Gibb’s
equation which becomes a theorem; such an assumption is
essential in any l.a.s. model, which consequently claims to be
only valid for systems near equilibrium. Rational ther-
modynamics must start with specific classes of material whose
constitutive equations obey precise requirements; an l.a.s.
model prefers, as it is traditional in classical thermodynamics,
to leave things more open, and to start only with the ther-
modynamical description of the l.a.s. which may be used for
quite different dissipative mechanisms. But in a specific
field—say for instance viscoelasticity or mixture of fluids—
final results are quite comparable, when internal parameters
have been, formally at least, eliminated, although those
deriving from rational thermodynamics are usually more
general [16].

But the flexibility of the l.a.s. method is probably its main
advantage along with the simplicity of the formulation of the
constitutive equations, especially for standard materials. It
may be adapted to many field of application; it remains open
to further improvements of its physical significance and of its
mathematical consistency. It provides constitutive laws simple
enough to allow for quite interesting mathematical studies
and numerical analysis of the mechanical systems to which it
may be applied. These points which have been described in the
foregoing as main objectives of continuum thermodynamics
will be briefly illustrated in the following sections.

IV Applications

The present section is restricted to four examples related to
isothermal solid mechanics in the frame of small perturbation
theory!!. The thermal dissipation is neglected. When it is not,
if intrinsic and thermal dissipation are uncoupled, the
generalized Fourier’s law for a standard model is:

_ a‘prh

ot ’
where ¢, (£) is a convex non-negative function with ¢, (0) =
0. It reduces to the usual Fourier law for small deviations
from a fixed T. One will deal also only with materials with
elastic stresses (¢“" = 0).

g= £= Vv (LogT) (€3]

1 Plasticity With Hardening. The internal variables o
and their conjugates 4 will be chosen as:

a= (¢, B, p), A=(s, B, R) (32)

00ther choices are possible in the frame of the l.a.s. model. For instance,
Meixner assumes that s = s9 but 7 # 79, [10].

Ugor application to finite-deformation theory of plasticity, see Mandel’s
paper ‘‘Thermodynamics and Plasticity’* in [10]. See also Sidoroff [17].
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and the free energy will be written:

1
pw=7(e—ep)a(e—ep)+k(ﬁ)+h(p) (33)
Here, a is a fourth-order tensor (@), €’ the plastic strain,
3 and p, respectively, a tensorial (symmetric) and a scalar
parameter that describe the hardening effect, k(/3) and 4 (p)
two scalar-valued functions. The equations of state are:

dk

g=a(e—¢"), B=-— drﬁ =—k"(8),
dh
R=— " =—h"(p) (34)
dp
and the dissipation is:
d= (0, &)+ (B,B) + (R, p) (35)

In the 4 space, a convex domain P is introduced, with K, a
constant:

P:.J(c+B)+R—K,=0,J(r) =75 7§ (36)
with 72 the deviatoric part of 7. The c.c.e. are defined by the
p.p. ¢*(A):

e*=1I,(A) (37)
with Ip the indicator function of P, i.e., the (generalized)
closed convex function which is zero in P and + o outside P.
The c.c.e. may then be written:

o’ +BP
J(c+B)

It is easily seen that 8 may be identified with ¢/, and p with the
cumulated plastic strain since:

p=NTE (39)
If k(B) is a constant, one gets the model of isotropic har-
dening: the domain P of elasticity keeps a constant center, but
its size is modified with the evolution. If R(p) is a constant,
one gets a model of kinematic hardening: the size and the
shape of P remain unchanged, but its center may move with
the evolution; linear kinematic hardening (Prager) is obtained
with a quadratic k().

=F=h , p=\ (A=0) (38)

2 Viscoplasticity. A class of rate-dependent viscoplastic
materials may be defined by the previous formulas (32)-(36),
with a p.p. ¢* (A4) of the Norton-Hoff type (Friaa [22]):

n+1
(n+1) " (A) =), (D)} (40)

where j, is the gauge function of the convex domain P, for
instance to be specific, the domain defined by (36). Again,
may be identified with ¢”, equation (39) holds and:

b B (J(a+B) +R)" o +BP
TR P J(a+B)
The previous result (38) is recovered forn — + oo.

(41)

3 Cyclic Plasticity. Experimental data show that the
previous model (41) is not satisfactory for cyclic loadings.
Chaboche [23] obtained a good agreement with experiments
with a suitable modification. Instead of (40), let us take a p.p.
which will depend on the thermodynamical variables:

BT ey e iff
sD(A,oe)—nJrl
><[2”(+B)"'R)+’fl[(B,B)—(k'(ﬁ),k'(ﬁ))]]””

K, (42)

The term added in the right-hand side of (42) vanishes in a
real evolution according to (34). Previous (38), (39),
and (41) are still valid but now:
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B=&+nBp (43)
The new term in the right-hand side of (43) is precisely the
term introduced in Chaboche’s theory which allows it to fit
the experimental data.

4 Damage of Ductile Materials. Ductile fracture in
metals involve considerable damage at crack tips, via
nucleation and growth of voids initiated by inclusions. For the
sake of simplicity, damage and hardening will be assumed
isotropic and described by two scalar-valued variables D and
p. Then, one takes:

a= (¢, D, p), A=(0, Y, R) (44)
and for the free energy, a suitable modification of (33)
1
pw= — (e—¢’)ale—€’)+m(D)+h(p) (45)

2

One will take a p.p. ¢* (A4) associated to a domain P which
depends on the mean stress (J defined by (36)):

P.J(o)+R+Y g(o,)=<0,3 0,=tr{0c) (46)

If ¢# and ¢°P are the mean part and the deviatoric part of the
plastic strain rate ¢7, then the c.c.e. may be written:

eD=A T =NV E (0,), D=glon), P=N @D
Following Rousselier [24], one can derive the form of g(0o,,),
if one assumes first that D is related to the volume fraction of
the growing microscopic voids, (i.e., D is a function of p)
second that change of volume due to elastic strains may be
neglected in the equation of continuity, i.e., p+3 péh=0.

Then, according to (47):
g(Um)gIVI(O-m)z_'BpYD'(-D) (48)

But ¥ = —m’ (D) is also a function of p, and both sides have
to be assumed to equal a constant. Looking at (47), the rate of
extension of the damage is proportional to the exponential of
triaxiality. That is the result obtained by Rice-Tracey through
a direct investigation of growth of cavities in ductile metals
submitted to high stress triaxiality.

V Global Analysis in Continuum Thermodynamics

So far one has considered the thermodynamical description
of the particle or of the ‘microscopic’” cell which is
schematized by this particle. One will now consider what are
the thermodynamical concepts which have to be used for a
system, like a structure. The present section shows that one
must in some cases introduce some global variables, and that
this introduction is quite useful, if not necessary, for a
thermodynamical description of a structure.

Geometrically, € is the bounded domain of the structure in
the x; space'?, 8Q its boundary. The material is assumed to
have elastic stresses (6" = 0). Evolutions are sufficiently slow
to be quasi-static. Body forces are neglected; given loads [F?
per unit area] are applied on the part dQf, and displacements
[#9] are imposed on the complementary part d{,. Small
perturbations are assumed. The system is assumed to be
thermally isolated.

1 A First Example From Fracture Mechanics. Let us
consider the propagation of a linear crack of length /() in a
solid undergoing two-dimensional deformation (plane strain,
plain stress, antiplane shear). Assuming no surface con-
tribution to energy or entropy on the crack, then the internal
energy E(Q) of the system is:

E= SQ pe (49)

2The x; are orthonormal coordinates; a comma is used for a partial
derivative.
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The energy balance leads to a quantity H which represents the
heat source produced at the crack tip of the moving crack
[25]: if I" denotes a closed curve surrounding the crack tip and
n the external normal, one obtains:

H:lim S q.HdT=J0 i()
r-o Jr
(50)
Jyp=lim S (pen —n. o u,)dl;
r—o Jr

The quantity J,, appears as a crack tip force due to ther-
momechanical singularities at A. The heat source H appears
in the expression of ¢* (through the term T7' H) and then this
source is a hot one. Moreover in the dissipation d, appears the
term J,, /. One may get a model of the propagation law of the
crack, by giving a p.p. ¢*(Jy):

iede*(Jy) (51)

Griffith’s criterion corresponds quite clearly to ¢*(J,) =
1,(Jo), where I, is the indicator function of the convex
domain J, <v.

This example shows that introduction of the global variable
!/ and of the global function £ may be quite useful.

2 Global Variables and Global Potentials. If one wants
to introduce a global thermodynamical potential for the
structure, one is led to consider fields of local variables as new
global variables; such a field is then usually defined by a
density in a volume, on a surface or along a line and will be
denoted by a bold letter. The evolutions are assumed to be

isothermal. o
If the fields F?, u?, « are given, the stresses and strains in £

may be found by solving a problem of equilibrium as in
elasticity. For instance the displacement field u is the
kinematically admissible field u’ for which:

Fi . u' da
g (52)

reaches its minimum value. The value of this minimum is by

definition the thermodynamical potential for the variables F?,
A s

u?, a:

W' (u':Fd,ud,a)=Sg p wie(u’), o) dQ—San

W(F¢,u?,a) (53)
It is possible to prove that:
aw . :
—:5 —A.ddﬂ+g (4. Fi+o.n.u")da
dt bl an

in such a way that A, the conjugate variable of «, is effectively
the field of A in Q. Moreover the conjugate variable of F? is
the displacement field on dQ, and the conjugate field of u? is
the field of traction ¢ . » on 3Q,. The analysis of the
dissipation leads to a similar result and, for instance, in the
example of I7.4 related to damage mechanics one may write:

d=A.c‘z=Sﬂ ((0,6")+ Y D+R p)dQ; (54)

then ¢, Y, R may be considered as the variables conjugate

(with respect to the dissipation) to the variables ¢?, D, p. For a
standard material, a global p.p. may be introduced:

@)= | e@ae, #@a)={ @) (59)
The introduction of global concepts is important not only to
use a more compact notation but for many other reasons. A
few of them may be mentioned:

1. In global potentials like (53) or (55) only the fields that
are important for the analysis of the structure are kept;

2. It provides a quite useful framework to discuss physical

1018/ Vol. 50, DECEMBER 1983

situations like friction, adhesion, unilateral contact, and
elastically supported boundary (see for instance [26]);

3. It exhibits the consistency of thermodynamical con-
cepts defined at the level of the particle with the ther-
modynamical concepts defined on the whole structure. This
question will be considered again in Section V1.

If the evolutions are not assumed to be isothermal, the
fields s and 7 have to be introduced

For instance, in the situation considered above in Section
V.1, one may introduce, like in V.2, the potential of the
structure of the field variables F?, u?, a, s, and of /, say the
global internal energy:

E(Fu,a,s,/) (56)

It may then be proved [25] that J, defined by (50), is also the
conjugate variable of / for this potential:
0B ...

.]0 al (Fausa,sa[)
Then, as it is the case for internal variables, the ther-
momechanical force at the crack tip is at the same time the
conjugate of / with respect to the thermodynamical potential,
and the conjugate of / with respect to the dissipation, see (51)
and (57).

The introduction of global variables is even more necessary
when one deals with a three-dimensional crack extension: the
crack front curve C is a global variable. In the ther-
modynamical analysis there appear the normal crack ex-
tension velocity field V along the curve C and its conjugate
force density field J, along the same curve.

(57)

VI Continuum Thermodynamics
enization

and Homog-

The object of the present section is to bring more precisions
to the considerations given previously in [I1.6.
Homogenization refers to a method by which it is possible and
reasonable, in an asymptotic sense, to substitute for a highly
heterogeneous medium (at a microscopic level), a
homogeneous continuum model (at the macroscopic level)
[26, 27]. It will appear that some local variables in the
macroscopic description are in fact related to global variables
at the microscopic level. _

To be specific, one will be concerned with materials that
admit elastic stresses (¢“" = 0) and thermodynamic poten-
tials, e(e, o, 5), internal energy or w(e, o, ), free energy; 6 is
the absolute microscopic temperature. Then the equations of
state may be written, for instance:

aw aw aw

TSR g AT,

Noting ¢ = V(Log 6), generalized Fourier’s law (see IV.1)
will be assumed:

(58)

g=—k(§) (59

1 Preliminary Concepts and Notation. In the discussion
of overall properties of heterogeneous media, it is essential to
define a volume element that is small enough to allow us to
distinguish the microscopic heterogeneities, yet large enough
to represent the overall behavior of the heterogeneous
medium. Such a volume element V is called the representative
volume element (r.v.e.), (for periodic composite it is simply
the elementary cell). Most of the macroscopic quantities
(M.Q.) are the average on the r.v.e. of the microscopic
quantities (m.qg.), eventually extended in the case of holes or
rigid inclusions. More precisely with p, o, €, e, w, s, £, g we

associate p, 4, , €, W, §, £, g defined by:
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p=<{p), 7=(0), E=(e), g=(q), E=(¢&)

} (60)

(61)

pS={ps), pé={pe), pw={pw)

1
o V] Evf(y) dy
y refers to the microscopic set of coordinates (local coor-
dinates in the r.v.e. V), while x denotes the macroscopic
coordinates.

Conversely, starting with the (M.Q.) &, & ¢, £, the
definition of suitable corresponding (m.q.) o, ¢, g, £ requires a
localization process. Such a definition must obviously satisfy
not only the corresponding conditions (60), but also the
localization conditions. When a r.v.e. is chosen, suitable
boundary conditions have to be prescribed. The set of
boundary conditions must satisfy some requirements.

(/) It must allow us to define a localization process: any
macroscopic state variables &, € w, £ being given, we must be
able to find the m.q. o, €, w, £ implied by the M.Q. ones, by
mean of the microscopic constitutive laws, of the boundary
conditions and of the equations of microscopic equilibrium:

div, 0=0, div, g=0 (inertia effects on (62)

the microscale can be neglected).

(i) For mechanical reasons, Hill’s macrohomogeneity
condition must be fulfilled by all fields o*, €*, g*, £*:

ET*E*:(U*E*), qtét:(q*‘gm)
As examples, let us mention [26].

(63)

(1) Localization in Periodic (or Quasi-Periodic)
Structure. It is the theory of homogenization developed in
some books [27] and in many papers, which appears to have
numerous practical applications in various fields of
mechanics. The cell ¥ is such that by periodicity it generates
the whole geometry (¥ is a special polyedron) and the
boundary conditions on dV are simply that o, ¢, g, ¢ take
equal values on opposite sides of aV, a necessary condition
resulting from the periodicity.

(2) Hill-Mandel Stress-Flux Localization
Process. Boundary conditions on V are ¢.n = 4.1,
q.n=4qg.n,

(3) Hill-Mandel Displacement-Temperature Localization
Process. The boundary conditions express that displacement
u and log 6 are the traces on a4V of linear functions of y in V, u
=é.pylogh=E.y.

A homogenization theory proceeds as follows: starting with
the M.Q., using a localization process, knowing all the laws
that connect the m.q., we get these quantities and we deduce
the corresponding laws that connect the M.Q. This is the
scheme that will be applied to thermodynamics in the
following subsections.

2 Systems in Equilibrium (Thermostatics). One starts
with €, T, « where T is the temperature in the macroscopic
description, and «(x,y) the field of internal variables will be
considered as parameters. As a consequence of the
equilibrium assumption, one will assume that 7 and # may be
practically equal (but not ¥ 7 and ¥V @ because the latter may
exhibit very high spatial oscillations due to the
heterogeneities). It is possible to find o, €, g, £ as functions of
E, T, o, and £ by solving in the cell ¥V, the equations (62)
supplemented by the conditions (60); and (60)s, the con-
stitutive laws (58) and (59) and the localization boundary
conditions. For a given localization process, this solution is
unique. If then one computes a, &, §, w, and g by (61), it may
be proved that:
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5= (6 T, ) =522 (&, 5, )
U.C'aé €, ,Oi~.ﬂa€_ €, 5, &
(64)
5 aw aée
S:———, = —
aT 0§

thus usual state laws are valid in the macroscopic description.
Moreover (64) gives the stress-strain relation of the
homogenized material, and similarly it is possible to find the
generalized Fourier law for this material which gives § as a
function of £.

For instance, for a periodic structure whose constituents are
linearly thermoelastic, the free energy may be written:

20 w(e 8)=(e—N8) a(e—N) — (A a\) 0> =3 & (65)

where « is a fourth-order tensor, A a second-order tensor, 8 a
scalar, all of them being functions of x and y. It is then
possible to prove that the homogenized body is itself ther-
moelastic and that 2 p w(E,T) has an expression similar to the
right-hand side of (65), with coefficients ghom, \hom —ghom
functions of x only which may be uniquely computed with the
mean value operator < > when a finite number of
boundary problems have been solved on the cell V.

3 Thermodynamical Evolutions Very Close to
Equilibrium. The precise hypothesis is now that the
characteristic time 7, of the macroscopic evolution is large as
compared to any time of propagation inside the cell.

If one admits that the first and second principles may be
written with m.q.:

pé— (o, €)+divg=0, p0s+divg—g.E=0

then it is possible to prove that the corresponding laws are still
valid for the corresponding M.Q. and that at each time ¢
equations (64) hold. This means that the thermostatic
description and Gibb’s equation are valid for the
homogenized material, if they are assumed to be valid for the
constituents.

4 Nonequilibrium Evolutions and Local Equilibrium
State. If the temperature § cannot be assumed to be nearly
uniform in the cell ¥ or if the characteristic time in the cell is
of the same order as 7, the previous analysis fails. In par-
ticular, equations (62) are no longer valid since inertia effect
with small wavelengths must be taken into account.

At each time ¢, one may apply to a cell the artificial process
described in I71.6 for which'the cell is isolated. As was said in
the foregoing, &, é, and some of the « have to be kept con-
stant; those o, say «’, which have relaxation time shorter than
75 are functions of time ¢, like all the other quantities defined
on the cell. One has to study a dynamical evolution toward
equilibrium in order to get the m.q. that characterize this
equilibrium. For instance, if the set of @’ is empty, one has to
study a dynamical thermoelastic evolution toward
equilibrium. Then one gets the microscopic local ac-
companying state. The l.a.s. defined in /1], and especially in
II1.6, is obtained when applying to this microscopic state the
technique of homogenization like in V71.3.

The anaysis of this section is surely not a decisive
justification of the model described in 717 and applied in IV
and V. But it strengthens the interpretation given in /77.6 and
gives an interesting contribution to prove at least the con-
sistency of the model and, simultaneously, a new example of
the usefulness of the method of homogenization and
localization in order to study highly heterogeneous media.

VII Bifurcation and Stability

In this last very brief section, we want to cite a few general
results concerning the stability of the evolutions of systems of
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standard materials (//7.4). For the sake of simplicity one will
assume that the thermal dissipation is negligible (adiabatic or
isothermal evolutions).

1 Convexity and Stability. If the material is elastic (no
dissipation), the solution of an equilibrium problem
corresponds to the minimum of the deformation energy
W’ (u, F?, u?) on the set of the kinematically admissible
displacements. On an equilibrium path, the first variation of
W must be zero and it has been proved that if the second
variation is positive, then the system is stable and no bifur-
cation is possible:

W2(u, F4, u9).6u?>0 (66)

Inequality (66) expresses the local and strict convexity of
the thermodynamic potential on the equilibrium path. This
theorem is also valid for finite deformation.

This known result may be generalized to most thermoelastic
and viscoelastic systems. For example, the Kelvin-Voigt
material [28]. Joint, strict convexity of the thermodynamic
potential and of the p.p. potential ensure in general the
stability of an equilibrium.

This result generalizes directly, but significantly, those of
Prigogine and his coworkers who have emphasized in the
frame of TIP [15] the importance of monotonicity of the
force-flux relation:

(A () =4, (&) . (& — ) =0 (67)

which expresses simply the convexity of the p.p. potential
e(a).

2 Special Case of Systems for Which p.p. ¢*(A) is the
Indicator Function of a Convex Domain. As is well known
and as was mentioned previously, such cases appear in
plasticity theory and in brittle fracture mechanics. The p.p.
¢ (&) is a positively homogeneous function of degree 1 and
#* (A) is the indicator function 7, of a convex, closed domain
P. As seen in Section V.2 or V.3, such a system has a global
potential W and a global p.p. ¢*:

W=W(F?, v, @), A= — kil , *=0*(A)

e (68)

and the corresponding c.c.e.:
&€do*(A) 69)
is equivalent to Hill’s maximum dissipation, i.e., for any A*
in P:
(A—A*) . a@=0.

The evolution of the system is obtained by solving (68) and
(69) with initial condition «(0).

Here again, the positivity of the second derivative W 2
plays an important role in bifurcation and stability analysis.
Following Hill, by studying the incremental response when
o (c) does not depend on the actual state [29], one obtains:
W, o strictly positive on af, (A) = stability
— (70)
W .2 strictly positive on 81, (A) = nonbifurcation

where a1, (A) is the normal cone and a1, (A4) the subspace
generated by vectors of the normal cone.

These criteria have been applied successfully to various
problems of solid mechanics: plastic buckling, stability of
interacting cracks in brittle fracture, etc. . .

Conclusion

We have tried to exhibit some of the most significant lines
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of research which have appeared in literature during the last
15-20 years in the field of continuum thermodynamics.
Nevertheless, continuum thermodynamics is still in the
process of full expansion. Progress may be expected in the
next few years in many directions: the improvement of the
formulation of basic statements and of the methods in order
to give to this field a better mathematical consistency, a
deepening of the physical interpretations and significance,
and the ability to provide powerful tools to extend the
scientific study of many fields, especially in solid mechanics.
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