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ON THE STRENGTH OF COMPQSITE MATERIALS!
VARIATIONAL BOUNDS AND COMPUTATIONAL ASPECTS.

2.C. MICHEL and P.M. SUQUET

raboratoire de Mécanique et d’Acoustigque. C.N.R.S.
21 chemin Joseph Aiguler

13402. Marseille. Cedex 08. FRANCE.

ABSTRACT: Bounds for the overall yield strength of composite materials
are derived in terms of the strength of individual phases and of their
arrangement, A general metnod for the numerical computatiaon of the
strength of periodic composites is outlined. The predictiens of both
methods, bounds and numerical simulations by the finite element method,
are presented and compared for some specific examples.

1. Iatroduction

This paper is devoted to the prediction of the strength of a
composite from the knowledge of the strengths of its individuals
constituents. Its connecticn with the present workshop is a problem
arising in the optimal design of a structure with respect to its
strength. For simplicity, the strength of the individual phases is
governed by the Von Mises criterion. Therefore, the results to be
presented apply more specifically to ductile compcsites, such as metal
matrix composites, rather than to brittle composites.

1.1. A MODEL PROBLEM

Consider a fixed domain (] subjected to body forces Ag, proporticnal to a
load parameter A and fixed on its Dboundary. Assume that the material
occupying ! has a limited strength governed by the Von Mises criterion,

with vyield stress k(x). Then the maximal load (limit load) which can be
supported by { is:

A= Sup {A such that there exists o(x) satisfying:
div(o(x)) + Agg(x) = 0, oEq(x) £ k(x) for every x in } (1.1)

¥,, i3 the Von Mises equivalent stress:

eq
3 172 Tr(9)
Peq = |5 %ii®i] v Sij T 0T T ij-
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A can alternatively =o-e defined by the following variational problem
{TEMAM (1985), SALENCON (1SB3)):

JQ k(x)eec(v) dx ]

A = Inf - , div(v) = 0 in Q, v = 0 on &9, (1.2)
v a2 ax | J
) 172
where €eq™ [3€ij€ij] is the equivalent strain. The model problem is

that of the optimal lay-out in {} of two materials in given proportions
¢, and ¢, ¢, + ¢ = 1, with yield stresses k1 and kz. If w denotes the
domain occupied by phase 1, X its characteristic functicen,
X(x) = kyx(x} + ky{1-x(x)) and A(W) the limit load given by (1l.1) or

(l1.2) with this definition of k(x), the model problem reads:
Maximize A{W) among designs W such that {wl = ¢, IR, {1.3)
]

As noted by MURAT and TARTAR (1%85) and by KOEN and STRANG (1986), a
relaxed version of this problem has to be considered. The result is
that, instead of the dichotomy phase l-phase 2, one has to consider a
family of composites made up of mixtures of both phases. Consequently
one has to predict tha strength of these composites as function of the
strengths of the constituents and of their volume fractions.

The predicticon of the yield strength of nonhomogeneous materials,
polycrystals or compasites, is also a relevant problem in Mechanics of
Materials. Appropriate, but not exhaustive, references adressing this
problem are given by DRUCKER (1959), HILL (1967), HUTCHINSON (1976),
BAO, HUTCHINSON and Mc MEEKING (1991). The specific case of composites
with a periodic micro-structure has been considered by LE NIZERHY
(1977), SUQUET (1983) , DE BUHAN (1986), DE BUHAN and TALIERCIO (1991).
In the case of an arbitrary disposition of phases, a new direction of
regearch was opened by WILLIS {1989) (1991) and PONTE CASTANEDA {1991)
who proposed new variational principles to obfain bounds on the
effactive properties of nonlinear composites. We propose here another
method, simpler in the specific case under consideration, to obtain
these bounds and new results on the strength domain of a composite.

l1.2. QOVERALL STRENGTH OF COMPOSITE MATERIALS

To begin, consider the case of a pericdic composite, the micro-structure
of which is specified on a unit cell V. It has been established (SUQUET
{1983) , BOUCHITTE and SUQUET (1987) (1991)) that the overall strength
domain of the composite is given by the convex set:

phom _ { e RZ + 3 o(x) such that: (o) = £, o.n anti-periodic on 3V
div(g(x)) = 0 , Guq(x) < kix), ¥x Ev } . (1.4)

where (.) denotes the volume average over the unit cell V. P"°™ can be
alternatively determined by its support function:

PR




357

retzy = Inf (Mx,E()) D (1.5)
u:Eper
Eper = {u=E.x + u', div(u) = 0, u” periodic}.
m{x,.) is the support function of the local strength domain:
mx,E) = k(x)eeq if Trie} = 0, M{x,€) = +° otherwise.

when the micro-structure of the composite is not periocdic, some of these
results can formally be adopted as definitions. Let V be a
representative volume eiement of the composite containing a large number
of heterogeneities of small size. The macroscopic dissipation function
M"°™:s the average of the microscopic dissipation funection M

mem(gy = Inf {(mMx,€{u))d (1.6)
€= {u=Ex+ w', div(u) = 0, 4" =0 on SV }.

It is readily checked that "°™ is a convex lower semi-continuous
function which is positively homogeneous of degree 1 with respect to E.
Therefore, it is the Legendre transform of the indicator function of a
closed convex set p"°®, which is the macroscopic strength domain:

phom = { Ies R: , 3 o(x) such that: (o) = L,
div{o(x)}) =0, deq{x) € k(x), ¥xEV } (1.7}

Remark: Instead of the boundary conditions of uniform strain on 8V in
(1.6), boundary conditions of uniform stresses could be considered in
(1.7). It may be expected that both boundary conditions are equivalent
in the limit of a large representative volume element. However, a3

pointed out by DE BUHAN (1986) and discussed further in BOUCHITTE and
SUQUET (1991), that is not the case in the present context of strength
properties, —

2. Bounds

2.1. ARBITRARY DISTRIBUTION OF PHASES

In this subsection, no assumpcions are made on the distribution of the
phases which can be arbitrary.

2.1.1 pissipation poctential: A fictitious linear composite, that is
incompressible and isotropic with shear modulus p{x) at point X and
occupies the same volume element v than the given real nonlinear

composite, is introduced. Then,
1

| 3 5 3 (2k%(x) 2
K(x) €gqlulx)) = | JH(X) Egq(ulx))

3p(x)
and




[
———ra

o L e o 38R i ekl b ey«

N R A R - s

S

N AR eaE

LY
Ln
o

1 1
2k% (x) \2
( ki(x) €,,:3(x)) y = Inf < - R{x) eeq(u(x)) > < —— . (2.1)
p(x) 2 0 3p(x)

Indeed, it fsllows from Cauchy-Schwarz inequality that the left hand
side of (2.1) is smaller than its right hand side. Morecver, equality is

obtained with
ki{x)

—_— (2.2)
€oq (UlX))

2
uix) = 3

The infimum of { k(x) €oq (U(X)) ) over all admissible fields u, can be
computed frem (2.1) by interchanging the order of the infima:

172

2
2k
me"(g) = Inf Inf <--p.(x) € q(u(x)) > ( &« X . (2.3)

pix) 2o0u€é dpn(x)

The infimum over u in (2.3) amounts to solving a homogenization problem
for a linear composite. Finally

2 :
172 2k° (x
mM°™E) = Inf (W°"(u,E)) [< & x) ] , (2.4) 1
R(x) > 0 3p(x) 3
om 3 l
where WM (W, E) = Inf ( —n(x) € q (u(*)) ) (2.5)
uE€E ‘2 {
The exact evaluation of the infimum over p{x) in (2.4) requires the
knowledge of the homogenized (gquadratic) energ¥ eM for arbitrary
moduli p(x). This exact information is not available except in very

specific situations (laminates), but for any choice of the field p,
(2.4) will previde an upper bound for MM'°M:

2k2(x)

172
for any positive field p(x).(2.6)
3p(x)

172
o™y € (Wo™(u,E)} [<

Therefore, even if it is not possible to compute W'°™ for arbxtrary
Bi(x), it is possible to use available expressions or upper bounds on won

for a class of specific fields p(x).

Remarks: 1. PONTE-CASTANEDA (1992) has proposed new variational
principles to obtain bounds on the effective properties of nonlinear
composites. When applied to the present situation, his methed yields

2

k

memg) = Inf [w“'“(,_;,E) +< {x) ] , (2.7
p(x) >0 ()
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and therefore for any specific choice of the field p

- k¢ (x)
me® ) € W™ (u,E) + . .
(E) (hsE) ( P ) (2.8)

The general expressions (2.4} and (2.7) are different, although they
yield the same infimum TF°m(E). However, for general fields p(x), (2.6)
does better than (2.3). This 1is a consequence of the straightforward

inequality xy € x2 + yz/d.

2. When cone phase of the composite is a void {respectively, a rigid
inclusion), its strength 1is O (respectively +o). Therefore the field

w(x) has to be Q (respectively +o0) in this phase.

2.1.2 Strength domain. AR expression for the effective strength demain
of the composite can be derived from (2.4). For a given field p the

function 172
whom By /2 (2k% /3u)

is positively homogeneousd of degree 1 with respect to E. It ia therefore
the support function of a convex set P{u) which can be determined
explicitly. In this connection, recall the following duality result:

Let A be a fourth order tensor with diagonal symmetry, then
F(E) = (1/2 P«:IE::E)”2 is the support function of the convex set

B L 1 “1.s.% 1
K =<%, —3a :Z:X€— .
2 4

Denoting the dual potential of whem py Wi°™®, we obtain:

.z ; Y K
P(p) =4 = € R such that: Wil i,y s E;- (2.9)

Taking the infimum over g in (2.4) is egquivalent to taking the
intersection of the sets P(u):

phom = M Pip) - (2.10)
pix)y =0

This last expression can be useful when the complementary energy We°m is

easier to compute than the strain energy whem, Any choice of p gives an
estimate from the outside of phom,
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2.2 LAMINATES

Consider a laminate made up of layers arranged orthogonally to direction
3. By virtue of the translation invariance of the problem, the strain
fields achieving the infimum in (1.5} will not depend on x, and Xy. It
fcllows from (2.2) that there is no loss of generality in restrictiag
the minimization to fields pu depending on xy only. For guch fields the
effective energy of the fictitious linear composite is

301 3
Whom gy = = 22 4 > () E},, for E with Tr(E) = 0

1
where Ef = :;' (ls + 255) o =f, = (2, - ED).

Ccnsequently (with Z? = SG§3 + 253), Eﬁi = qu - Ef)

1
= B : ) 32
P(u) = ZE IRS such that: <— ZI + (l.l.) ( ) (2'11-)

To compute the intersection of the sets P(u) we rewrite (2.11) as
o< (w) <(k2- Ef)/u>

The intersection results in:
hom 5 T < - 2 Z? 172
o7 =45, 5, € Inf k(xg) , 5, €{(k¥ - 2) : (2.12)
xSV
Similar expressions have been previously derived by different means by

DE BUHAN (1983), EL OMRI (18%92), PONTE~-CASTANEDA and DE BOTTON (1992).

2.3 ISOTROPIC TWO-PHASE COMPOSITE .

We consider in this section a composite made up of two phases in
proportions ¢y and ¢, with yield stresses k, and k;, (for simplicity we
assume k, > k, > 0). We also consider a family of fictitious linear
occupying the same configuration as the real nonlinear

composites

composite but made up of two incompressible, isotropic elastic materials
with shear moduli p; and p, . It is further assumed that the given
nonlinear composite is isotropic in the sense that all the fictiticus

composites described above are macroscopically isotropic. (2.6)

linear
= s in phase 2 , and yields

is applied with pi{x) = p, in phase I, u(x)
the upper bound:

172

¢y ki c, k3

rpom(E) < khofn 7eq' khom = Ing p_Hc:lm - .
l—‘-‘,r I-l? 20 ,-'-1 “’2

(2.13)

where pﬁ“m is the effective shear modulus of the fictitious linear
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composite. The linear composite, which Lis isotropic by assumption, is
inccmpressible, except when one phase is a void, in which case a
separate treatment has to be appiied. (2.13) means that k"°™ is an upper
bound for =—he yield stress of the composite.

2.2.1. Hashin and Shtrikman upper bound: The bound of Hashin and
Shtrikman can be used to bound the right-hand-side of (2.6)

C4

, where pzs = py ot ’ Y

AS p'_'].
1 2(1"C1 ) p?

p-hom < U.’

-+
Y-l 3r+2
(ehis explicic expressicn is given for u, 2 Wy ). It is possible to work

our analytically the computaticn of the infimum in (2.13) and the final
result for the effective yield stress is:

hom < . ‘ 3 [](1]2 2{1-c4) ‘ 3 2.14)
ke + —— —— -— - . ( .

1 1

Ky §-2c, kz 5—2c1 §-2c,

This result is identical to that given by PONTE-CASTANEDA and DE BOTTCN
({19%2).

2.3.2. Hashin’'s spheres assemblage: The Hashin and shtrikman bound, and
consequently (2.14), are valid under the only assumptions that the
phases are isotropic and arranged isotropically. In gseveral cases of
practical importance, one phase (phase 1) is dispersed in the other
phase. A model morphology accounting for this additional information has
been prcposed by Hashin. It consists in the piling up of composite
spheres and is referred to as the Hashin‘s assemblage of spheres. A
bound, which is sharper than the general Hashin and shtrikman bound, has
peen established for this model composite by HERVE, STOLZ and ZAOUI
{1591) , improving a previous result of HASHIN (1962} under the
additional assumption that the assemblage of spheres is igotropic (this
assumpticn was not used by HASHIN). Their result reads (when piy 2 Ba )

H1
ahomg HSZa (1 4 e Fiey, Y, Y)) with Y = " and, (2.15)
-1
2
2 1 e(1 - e/
F(S,Y,Yy) = | = (1 ~¢c) * -
5 ¥ -1 10 19(1-Y) 4,3 10 25
—_——— o —
21 16+19Y 21 24 (Yy-1)

In +his case, it is no longer possible to work out analytically the
infimum in (2.13), but this can done numerically (cf section 4).
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2.3.3 Three-phase estimate. Estimates {and not bounds) on the effective
vield strength of the composite may alsc be obtained from {2.13) by
inserting any expression of u'°™  relevant to the morphology of the
composite under consideration. For instance, for the case of a
dispersion of spherical particles of phase 1 in a connected matrix of
phase 2, the generalized self-consistent gcheme of CHRISTENSEN and LO
can be used. The shear modulus p%$m predicted by this three-phase model
is obtained by solving the implicit equation (cf HERVE et al (1991})):

hom hoem
Hyop H3o
=1+ o,F Cq Y= - (2.18)
He H2 :

With this, the optimizaticn preplem  (2.13) is solved numerically to
cbtain a corresponding estimate for kg$m. '

Z.2.4 Rigid inclusions: When phase 1 is a rigid phase (k, = +), the
above predictions simplify to:

172
mem ey < (W°"(E) x, (1 - cy)) . (2.17)

where W'°™ is the effective energy of a fictitious incompressible linear
composite made up of a matrix with shear modulus p, = 2k, /3 containing
rigid inclusions in preportion ¢, . The upper bound derived from the
Hashin-Shtrikman theory is +o, while the upper bound for the Hashin’s

spheres assemblage is:

172
_273\¢
koM < x 1 1 2 1 o (1 o ) 2.18)
& - + C - - C - . .
2 ) 15! 1) 10 ,,5 10 (
- — P
L 21 ) 21 )

on the other hand, the corresponding three-phase estimate is cbtained
from (2.17), where

m ham
o Hyy 2

hom 2
H3¢ Eeq’

Whom(E) =

LS N ]

2.4 ABOUT DRUCKER'S REMARK

A simple remark which goes back to DRUCKER (1959), throws light on the
fact that, in general there is no reason for which the optimal field
pw(x) in (2.4) should be constant on domains conforming to the geometric
arrangement of the phases. The remark is that when it is possible to
pass a plane of shear inside the weakest phase of the composite, the
strength of the composite in the corresponding direction is equal to the
strength of the weakest phase. It is instructive to derive this result
from the above theory. Consider a volume element V gsubjected to 2

!
i
i
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macrosccpic shear E& containing a plane of shear (and therefore a small
layer of width §) passing through the weakest phase (phase 2). The layer
is denoted by II and V-II is denoted by I (Figure 1). Set:

. . . , 1
W(x) = € if x € II, p(x) = 1/€ if x&€I, E = E-(ex®ey + e Qe )
1/2
2k?
Then, by definition of "°": £~ = Z:E < mMem gy € |w'°™(u,E) (-3—->
TH

The effective energy of the fictitious linear composite is (cf §2.2):

and a straightforward computaticn leads to

172
(k%) €% + ¢, k2 g

171 1 |38 s

meme) < 3 .

2
C € + ¢y

Letting now € tend 0 in this last expression, we obtain Z%Y < kZ/JEZ

kZ/JE is the shear strength of phase 2 (weakest phase) and is also a
trivial Llower bound for the shear stress of the composite, which is
therefore equal to szdil It is clear from this example that the optimal
field p in (2.4) does not conform to the geometry of the composite but
to the strain distribution in the nonlinear composite (see (2.2}}.

Figure 1: An illustration of DRUCKER's remark. a): real composite with a
shear plane passing through the weakest phase. b): fictitious linear
composite and distribution of the field u.

— = .

mE
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3. Periodic composites : numerical determination of the strangth domain

Recall that, in the case of a periodic micro-structure with unit cell V,
ohe® o aiternatively II'°™ are given by (1.4) and (1.5). The minimization
problem (1.5) <= non-smooth in the sense that the function to be
minimized is not differentiable at the origin. Although this
minimization prcblem could be attacked directly (MAGHOUS (1991)), we

approach the problem differently.

3.1, ELASTIC PLASTIC ALGORITHM

In the point of view that we have adopted, the strength domain is
cemputed via the resolution of a sequence of evolution problems for an
elastic ideally plastic material, with yield stress k(x) and elastic

cempliance s(x) (stiffness c(x)). This evolution problem reads:

3\
. - .p -p . 1) .
¥Vx €V, €{u) = 3:0 + € ,eij=,\ y O £k, x20
20 q
eq
. . s e . (3.1)
div(og) = ¢, o.n anti-periodic

. . -' -'
uw=E.x+u ,u periodic )

Given tha macroscopic strain-rate E , the variational formulation (in i
terms of stresses) of this problem is:

fFind o(t) € K, such that:
{3.2}

(sort)s (o - aie))) = Ex(E - Z(t)) Vo€EX

where X = (o, div(o) = 0, O.n anti-periodic, J,. () € k(x}, x in V },

=~ and ¥ are the volume averages of the fields & é;d g. It is readily
seen that when o(t) attains asymptotically a limit o(c) as t approaches
o, the associated macroscopic stress Z(x) satisfies:

(E, £ - () €0, vEehm
S(x) is on the boundary of p"o™ .nd E is an outer normal

Therefore,
vector to P'°M at I(c0).

3.2. PRESCRIPTION OF OVERALL STRAINS OR STRESSES

constituents, the

Independently of the specific constitutive law of the
the homogenization

local problem to be solved so as to complete
procedure has two specific features.

be satisfied DY
nsiderations can
o usual poundary
auch as combined

The first one is the periodicity condition that should
part of the displacement field. Sometimes, symmetry coO
be invoked to reduce these periodicity conditions t
However, multiaxial overall stress states,

conditicons.
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tension and shear, do not satisfy the required symmetries and the
periodicity conditicns cannot be done away with. The linear relations
between =the degrees of freedom of the problem, as derived from the
periodicity requirement, can be accounted through saeveral methods such
as replacement of unknown variables, penalty methods, Lagrange
muitipliers. The replacement method has been adopted hereafter.

The seccnd feature is that the loading to be applied to the unit cell is
not prescribed thrcough boundary cenditions, but through an average
conditicn along prescribed paths in the space of overall strains or
overall stresses. A method which permits to go along paths in both
gpaces (s presented. For simplicity, the method is illustrated in the
context of linear elasticity, but its generalization to incremental laws

is straightforward.

3.2.1. Prescribed overall strain: chsider first the case where the
overall strain E (or strain rate E ) is prescribed: E = E . The

decomposition

u = E.x + u*, a pericdic, {3.3)

suggests that the problem for u', the periodic part of u, be solved with
E as a prescribed initial strain. The variatiocnal formulation cof the

{elastic) problem is:

Find u’ pericdic such that, for every periodic v
. (3.4)

(c:E{u'):E(v')) = - {c:E:e(v )) )

Upon discretization, the unknowns are denoted by the vector {u*} and the

following matrices are introduced
\

1
[K] = Ez[ke], where [k*] = T;T'j; (B} [¢] [B] dx

¢ 5. (3.5)

Yl

- - - 1 T
(R} = J(Kk ), where (k ) = =— Jo (B)' (] dx
e
Y
The matrix (B) relates strains and displacements, i.e. {e'} = {B]{u'}. The
linear svstem to be solved reads:

(K]{u"} = - [KJ{E} . (3.6)

3.2.2. Prescribed overall stresses: The above method needs to be

modified when overall stresses, rather than overall strains, are

prescribed. In this new problem, the overall strain E is an unknown

while the average of the stress field is given. The unknowns of'the
problem are the periodic field u (or the discrete unknowns {u } )
together with the 6 independent components of the overall strain E.
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These new unkncwns are incorporated into the discrete formulation of the
problem and the & generalized forces associated with them are the
components of the overall stress Z. Let v be a displacement field in the
form (3.3), asscciaEed with a macroscopic strain E and a periodic
displacement field v . The principle of virtual work, applied to the

) - 0
> = {v , E} {Z} . {3

and every constant strain E in RC. After

unit cell VvV, yields:

’ \

1
_— B)T d
eivlje[]{a} x

*

{g:e(v)) = S:E i.e. {v ,

(U]}
—
A

1 A
em‘fe {o} dx
\ /

. .. . . -
for every pericdic field (v }
due account of the elastiz law, we cbtain:

{

1 i
sze [B]T{U} dx _ _
e K K| [o* K K| {o* {0}
< > = . d.e. = (3.8)
% % z

E u I {g}y dx
fvi ve
e

=
mil
1
=
®i
1

[K] is defined as: (K] = {([c]). Equation (3.8) displays the true
nature of tge degrees of freedom {(u} on the unit cell. The pericdic
unknowns {u } capture the local fluctuations of the actual displacement
field, while the 6 global d.o.f. {E} describe the average deformation of
the unit cell. Formulation (3.8) is much more versatile than (3.8) in
the sense that ({E}, (I}, or a combination of the components of both
can be prescribed as standard d.oc.f. or forces. Prescribing

where

quantities,
averaged stresses or strains amounts to imposing forces or
displacements, oOnce the identification of the averaged strains with the

6 macroscopic degrees of f{reedom of the unit cell E and of the averaged
gtresses T with the 6 corresponding forces has been performed.

ical purposes these additional degrees of freedom are accounted
for through the introduction of an additional node (macroscopic node)
that belongs to each mesh element. The array of unknowns at the element
level (subscript e) and the classical matrix [B] are replaced by

For pract

{ue} - u, , [é] = [B,]II ’ {ee} = [E]{ue} = [B]{u:} + {E}

E
gs matrix and

where [ is the 6x6 identity matrix. The elementary stiffne

the elementary force are respectively replaced by:




167

[ie] = 'I-éi_fe [§1T[C]{§] dx, {Ee} = {% L [ﬁ}r{a} dx}

At the glchal (assembled) ievel, the last 6 components of the
generalized (forces vector are precisely the 6 components of the average
of the stresses over the unit cell.

3.3. INTEGRATION SCHEME FOR THE ELASTIC-PLASTIC PROBLEM

3.3.] Egquilibrium iteracions. Yewcan scheme with control of the overall

scresses. The direction of =he overall stresses is often to be imposed
(simple tension at the macroscopic level for instance). Constant loading
steps <an induce large displacements steps. So as to accurately compute
the the limit load, locad steps have to be carefully controlled in the
vicinity of the asymptote. A possible strategy could be to control the
deformaticn steps whenever the overall direction of strain rate is known
in advance. This is not the case when the overall stress direction is
prescribed. A mixed procedure is thus proposed; the direction of the

overall stresses is prescribed, I, = A, 2 ,but the amplitude X, is an

unknown of the problem which is evaluated requiring that: Z:G:Et = t.

Let us assume that the state variables of the prcblem are known at time
L

t, namely the array {(u }t of the periodic local displacement, the array

{E}, of the overall strains and the array {dJ}, of the local stresses at
each integration point. The principal unknowns at time t+At are:

W' = Tt AT {Blepe = (B} + {(OE) -

For a given At, the incremental scheme amounts to finding increments
(&} and {AE} such that the unbalanced forces vanish at time t+lt:

{v',E}.{Eim}“m =0, Vv periodic, ¥ E € R with (E}.(Z) =0, (3.9)

withs {ﬁint}td'ﬂt - {zi_\lr-l- lJ’lG [é]T{a}t+At dx
a

{T}ean depends on the initial conditions {0}, and on the increments

{Au'} and (AE} . (3.9) is a nonlinear equation. An iterative Newton
scheme is proposed. At the ith iteration of the step t+At, the procedure
goes as follows:

. i1 Q- . '.-
Assume trat (&w'),., . {(AE}]L, are known, with (Z'):(8E}lh = A

i) Compute (J}i;At at each integration point of each element (following
the procedure described at point 3.3.2 below),

ii} if tHe convergence criter:on 1s not met, solve the linear system

P g1 {.\ }i-1
(Kl var tciar = VFint/ia,



a i 611 . B A . i
Sriar = Yep , 80y, periodic , {Z):(8EM,ar =0 (3.10)

T+A4Ot

. ,
iii) Update {{w Teent and {AE},,a, for the next iteration by

i i-1 i

(Bu }t+at = (& Pract (8u }t+At'

(OB}, ap = (BB} L+ (8E}{,ap- (3.11)
w | :
i i -y . . i

(3.10) involves linear constraints on the variables (5u Yeent ! {8E}] L ae -
- i1

Classical transformaticns on {“EIE},Lm and modifications of [K]t+Atand

~ i'1 .
{Fint} A account for this constraint. Several choices of the stiffness
t+ At ‘ .

a i1 i
matrix [K]t+At are possible. All the examples presented in section 4

were solved with a constant stiffness strategy, the stiffness matrix
being the initial stifiness formed once and for all at the beginning of
the loading precess and with the initial elastic moduli. This method
turns out to be computationaly inexpensive and rapidly converging. The

typical convergence rate is between 3 and 15 iterations, under the only

condition that the increments {Au'}o and {AE}O at the beginning of each
step be initialised with the values of the increments at convergence of
the previous step. The net forces are computed and the iteratiocn
procedure typically terminates when the ratio between the maximal
unbalanced force and the maximal resisting force is less than 10'3.

3.3.2. Local integration of the elasto-plastic behavior. The effective

computaticn of {“};+At' with given {Au'}' and {AE}i , is often referred
to as the "local integration of the constitutive law”. This integration
is performed separately at each point of numerical integration in each
element. An abundant literature exists on this gubject and the following
list does not attempt to be exhaustive SIMO and TAYLOR (1986), SLOAN
{1987), DEBORDES and al (1987), HORNBERGER and STAMM {1989). Qur choice
is to consider the elasto-plastic constitutive law as a system of
differential equations with respect to time. The system to be solved at

each point of numerical integration reads:

»

[Coplo-)] ({Bl{ﬁ o+ {é}), T in [t,t+AE], (3.12)

{0}

T

with initial data {J}, [Cep] denotes the elasto-plastic tangent
w

stiffness matrix. The rates {ﬁ } and {é} are defined as

. i ” . 1
{u } = S;'{ﬁu be {E} = At {AE} .

A semi-implicit Euler scheme with variable steps is used to solve the

system of differential equations (3.12). 1Inside a subinterval [Tg:Ty]
within [t,t+At], a mid-point methed is used:
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(o), = (tB1¢d"y + 1), (3.13).

{3.13) is solved by a classical Newton-Raphson technique. The time step
is chosen following HORNBERGER and STAMM (1989).

4. Examples

4.1 LAMINATES

The two=-phase laminate is a test problem on which the validity of the
algorithm can be checked. The laminate is submitted to a macroscopic,
off-axis tensile test. 8 is the angle of inclination of the direction of
tension with respect to axis 1. The results of the finite element
gimulation agree with the analytical result deduced from (2.12) (Figure
2). There is no weakest link effect in tension. The tensile strengths in
the direction of the layers and in the direction orthogonal to the
layers are both equal to the average of the strengths (which is an upper

bound of the macroscopic strength).

4.2 LONG FIBERS

Consider a two-phase composite made-up of elastic fibers (infinite
strength) in a metal matrix composite (flow stress ;). The fibers are
parailael to direction 3 and arranged at the nodes of a triangular
lattice. The unit cell can be chosen to be hexagonal. The composite i3
deformed is submitted to an in plane transverse tension. 0 is the angle
between direction 1 and the tensile direction. For fiber volume
fractions below Sy = JE%/B there exist directions for which a shear
plane can be passed through the matrix. For such directions the tensile
strength is 205/@3-, which is the tensile strength of the matrix under
plane strains. For a significant transverse reinforcement, the volume

fraction of the fibers has to be chosen above c;.
For long fibers composites, computations should not be performed under

plane strains conditions but under generaljized plane strains conditions.
A body is said to be in a state of generalized plane strains if:

u = u.;x(x1fx2)r & = 1r2r u3 = E33x3.

¢

The 4 relevant components of the overall strain and stregs are

T T
(E} = {Byqs Epps 2Eqp. B33} (Zy = (&0 e S50 Zgsd

and the unknowns fields under consideration are:

'l - - T
et = {5;1' €221 €4 o G}' {0y = {9yy+ O3+ Tps T35 -
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The general metnods exposed for 3-d computations in section 3.2 can be
transposed to 2Z-d computations, after modifications of the matrix ([B]

which now reads as

Byy « - byy 1000
. b21 -« by 01 00
byy . b3n o010
| Q 00 0 0QGOC1

where the bij's are the components of the classical matrix [B] in
2-dimensions and n is the number of local d.o.f. for each element. Once

again it can be checked Ihat:

-

- ~ u
te,r = dely vy = (B *} .
E
Once these modifications are performed, the elementary stiffness
matrices are assembled in a standard manner. The tangent matrix (Cep ]
has to be modified accordingly. The differential system (3.12) is now to

be solved for the 4 unknowns 0y4, Ghas Oy and Og3+

4.3 ISOTROPIC TWO-PHASE COMPOSITE

Consider a two-phase composite made=-up of spherical particles (phase 1)
dispersed in a matrix (phase 2). For comparison with finite element
computations, a 3-d cell should be chosen. To avoid difficulties
intrinsic to 3-d calculations, we have used an approximate axisymmetric
model, similar to that of BAO, HUTCHINSON and Mc MEEKING (1991). This
axial symmetry, imposed on the computed solutions, rules out the
possibility of non-axisymmetric failure modes under axial tension. This
igs the reason for which no "DRUCKER's effect" is observed.

i) When the particles are purely elastic, they can be considered as
rigid for the determination of the macroscopic flow streass. The finite
elements results and the predictions of variocus bounds and estimates
presented in section 2, are compared on Figure 4. The three-phase
estimate gives the more reasonable agreement with f.e.m. calculations.
ii} At a given volume fraction of inclusions, when the ratic between the
flow stress of the two phases is varied from 1 to infinity (Figure 5),
the macroscopic flow stress varies from 1 to its value for rigid
inclusions. This limit value is not reached asymptotically but is
attained for a finite value of the ratio k,/k, above which the stress in
the particles never reaches the strength of the particle. Again, the
predicticn of the three-phase model reproduces the main trends observed

in che f.e.m. calculations.
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Figure 3: Two-phase ccmposite reinforced by long fibers. Triangular
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the transverse plane.
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