The proceedings of an International Symposium on current trends and
results in Plasticity, held at the International Centre for Mechanical
Sciences, Udine, Italy, 27-30 June, 1983

Symposium dedicated to the memory of

A. V. TureLLO
P. BrROUSSE

W. T. Korrer
W. Nowacka

J. H. ARGYRIS
D. C. DRUCKER
P. GERMAIN

P. G. Hobge, Jr
J. HuLr

A. J. IsuLinsKL

J. KRAVTCHENKO
CH. MASSONNET

F. K. G. Opouist

Y. OuasH1
I. N. SNEDDON

D. C. DrRucker Urbana, USA
Cambridge, UK Yu. Rarotnov
Tu. LEHMANN  Bochum, FRG
G. MAIER Milan, Italy

W. JOHNSON

Professor Waclaw Olszak

SYMPOSIUM CHAIRMEN

G. BiancHi and A. SAawczuk

HONORARY COMMITTEE

President of CISM, Udine, Italy

Rector of CISM, Paris, France

Rector of CISM, Delft, The Netherlands

Former President of the Polish Academy of Sciences,
Warsaw, Poland

Copernicus Award Holder of the Polish Academy of
Sciences, Stuttgart, FRG

Foreign Member of the Polish Academy of Sciences,
President of IUTAM, Urbana, 1., USA

Foreign Member of the Polish Academy of Sciences,
FEaris, France

Minneapolis, Minn., USA

Secretary General of IUTAM, Gothenburg, Sweden
Foreign Member of the Polish Academy of Sciences,
Moscow, USSR

Grenaoble, France

Foreign Member of the Polish Academy of Sciences,
Liege, Belgium :

Foreign Member of the Polish Academy of Sciences,
Djursholm, Sweden

Nagoya, Japan

Foreign Member of the Polish Academy of Sciences,
Glasgow, UK

SCIENTIFIC COMMITTEE

Paris, France
Moscow, USSR
J. R. Rice Cambridge, USA
Q. C. Zienxkiewicz  Swansea, UK

J. MANDEL

-

N .

PLASTICITY TODAY

Modelling, Methods and
Applications

Edited by

A. SAWCZUK

International Centre for Mechanical Sciences, Udine, Italy

and

G. BIANCHI
Polytechnic of Milan, Italy

ELSEVIER APPLIED SCIENCE PUBLISHERS
LONDON and NEW YORK



ELSEVIER APPLIED SCIENCE PUBLISEERS LTD
Crown House, Linton Road, Barking, Essex IG 11 8JU, England

Sole Distributor in the USA and Canada
ELSEVIER SCIENCE PUBLISHING CO., INC.
52 Vanderbilt Avenue, New York, NY 10017, USA

British Library Cataloguing in Publication Data

Plasticity today.
1. Plasticity
I. Sawczuk, A. II. Bianchi, G.
531°.3825 QA931

ISBN 0-85334-302-0

WITH 278 ILLUSTRATIONS AND 19 TABLES
© ELSEVIER APPLIED SCIENCE PUBLISHERS LTD 1985

Chapter 3: © in this format, ELSEVIER APPLIED SCIENCE PUBLISHERS LTD
1985
In all other formats approved for public release; distribution unlimited.

The selection and presentation of material and the opinions expressed in this publication
are the sole responsibility of the authors concerned

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the copyright
owner.

Filmsct and prioted by The Universities Press (Belfast) Ltd.

B

Preface

Classical plasticity, as regards its experimental motivation, constitutive
modelling, mathematical methods for dealing with its equations, and
engineering applications of the theory, is a fairly well founded and
established domain of mechanical sciences. The deformation theory of
plasticity is properly understood as far as its drawbacks, applicability
and usefulness are concerned. The flow theory is endowed with
appropriate theorems and mathematical methods for dealing effective-
ly with boundary value problems concerning various technological
needs. Its particular field, the limit analysis theory, appears to be
applicable and particularly useful in several domains of engineering.
To be specific, we may add that classical plasticity is a mature science
as to its:

(a) mathematical description of the rate independent material be-
haviour;

(b) methods of solutions regarding equations involving perfectly
plastic material response;

(c) applications of the perfectly plastic model in metal forming and
structural engineering, to mention two extremes.

However, the actual requirements of applied research neced to be
reflected upon and an attempt made to bring together the many facets
which go to make up the present state of the domain roughly specified
as plasticity. Problems of high pressure and high speed metal forming;
of inelastic wave propagation; of the dynamics of vehicles and struc-
tures, naval, terrestrial and spatial; of structural behaviour under
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Local and Global Aspects in the Mathematical
Theory of Plasticityf

PIERRE M. SUQuUET
Université de Montpellier IT and GRECO CNRS GDE, France

ABSTRACT

The attention is focused on three recent theories which contributed to the
development of the mathematical theory of plasticity. The common point
of these theories is the evidence or the use of the ‘generalized standard’
form of the encountered constitutive laws. Section 2 is devoted to
homogenization. It demonstrates how elementary microscopic laws might
give rise to standard macro-laws involving intemal variables. The two
next sections are devoted to a thermodynamical and mathematical
discussion of these laws, as well as from a local standpoint or from a
global one.

1. INTRODUCTION

The Mathematical Theory of Plasticity is the title of Hill’s famous book
written in the early 1950s [15]. Thirty years later, in 1983, after the
remarkable and correlated development of computer sciences and of
applied mathematics, after the emergence of continuum ther-
modynamics, this expression concerns more the field of convex analysis
rather than that of Prandtl’s nets. The past ten years have evidenced
the benefit that mechanics could derive from collaborating with closely
related fields and especially with applied analysis. The three sections of

1 Part of this work was done while the author was at Mécanique Théorique, 4
place Jussieu, 75230 Paris Cédex 05, France
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280 Pierre M. Suquet

this paper refer to three theories elaborated in this spirit during the last
ten years. Proceeding gradually from the particular case to the general
one, they intend to demonstrate that theories with internal variables
constitute a rational approach to continuum and structural mechanics.

Section 2 is devoted to homogenization, i.e. to theories which enable
one to derive the global properties of highly heterogeneous media. The
main point of the section goes as follows: consider two (or more)
elastic perfectly plastic materials, aggregate them into a basic cell and
repeat periodically this basic cell. Then the constitutive law of the
mixture, derived by homogenization, requires the introduction of inter-
nal {(micro-structural) variables.

Once the need for models with internal variables is emphasized we
discuss, with the help of continuum thermodynamics, the theoretical
structure of these models. The examples constitute the main point of
Section 3 and show how this structure can be used to derive simple but
efficient engineering models, endowed with the same mathematical
characteristics.

In the last section the notion of standard law is generalized to
structures where global variables (such as averaged strains, geometrical
parameters of the structure, etc.) are under consideration. A rapid
survey of the encountered variational problems obviates the
mathematical common points in the discussion of the evolution of
various systems or phenomena: plasticity, damage or rupture.

Since convexity is a common underlying feature of most of the
paper, a small appendix is devoted to a non-polemical discussion of its
‘hegemony’.

The three points under consideration here will be discussed in the
context of infinitesimal strains. Another point, treated elsewhere in this
Symposium, could have been an extension to finite strains. However,
mathematical studies at finite strain are essentially as of now in the
domain of ‘Plasticity to-morrow’.

2 HOMOGENIZATION AND PLASTICITY

2.1. The Four Steps of Macro-Micromechanics

In the deterministic discussion of the overail properties of heterogene-
ous media the first step is to define a representative volume element
(r.v.) ¥ small enough to distinguish the microscopic heterogeneities,
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& r.v.e.

Basic cell

Periodic distribution

Fic. 1. Representative volume element: basic cell.

yet large enough to represent the overall behavior of the heterogene-
ous medium: a suitable rescaling (amplitude 1/8) maps ¥ onto an
enlarged volume V where all the heterogeneities can easily be distin-
guished.

It turns out that the problem contains two scales: the ‘macroscopic’
scale x, on which all the macro-quantitics depend and the
‘microscopic’l scale y on which the micro-quantities depend. Consid-
eration of the latter scale gives rise to highly oscillating fields in the
heterogeneous body.

The second step of the analysis is the definition of MACToscopic
quantities from microscopic ones. This is achieved through an averag-

+ Large enough to be in a position to apply continuum mechanics.
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ing process: for a field f defined in the heterogeneous body we set

1 1
Fo=0 = - | feroas
_ 1
- [ ey =g [ ren ey 0

where f(x, y)=f{x +y8).

Most of the macro-quantitics are the average in the preceding sense
of the micro-ones.T It is the case for the stress and strain tensors, and
for all the thermodynamic functions which are usually assumed to be
additive functions: internal and free energy, entropy, dissipation, mass
per unit volume . ..

S=(g), E={e), p=(p), W=(w} D=(d) pS={(ps)
(2)

Remark 1: 1. If the constituents of the heterogeneous medium are
not perfectly bonded (especially if voids or cracks are present) the
[ave]raging process is valid for extended fields defined on the defects

35].

2. We are not considering here purely statistical descriptions of the
r.v.e. (Kroner [19], MacCoy [21]) or approximate ones (self-consistent
models by Hill [16], Zaoui [37], Hashin’s spheres model).

The third step in constructing a theory of homogenization is to define
a localization procedure, i.e. a way of deriving microscopic fields from
macroscopic ones. For this purpose the average relations (2) and the
microscopic constitutive law must be taken into account together with
other conditions arising from the equilibrium equations and from
geometrical considerations. In order to derive the first condition we
note that according to (1), the micro-stress field o(x, y) satisfies

div, o(x, y)= & diver(x +8y) = S(pii— phH% (3)

As far as the phenomena under consideration occur in a low
frequency range (when compared to the size of the r.v.e.), the second
member of (3) can be neglected. We obtain a microequilibrium equa-
tion

div, =0 4

+This assertion suffers counter examples: elastic coefficients, plastic strain,
plastic work.

3 MFICIO and micro fields are respectively denoted by capital or minus letters.

§ Div, =divergence with respect to the y vanable.
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We are not yet in a position to determine the micro-fields e, € from
the macro ones %, E, since we are missing suitable boundary condi-
tions on 3V, These boundary conditions arise from the geometrical
arrangement of the heterogeneities. They should closely reproduce the
boundary conditions of the r.v.e. Vin the composite. Thus they should
characterize the in situ state of stress and strain within the heterogene-
ous medium. They very often reduce to assuming that the micro-strain
or stress is uniform on aV (hence equal to the macro-strain or stress);
the boundary 3V sometimes tends to infinity. Together with (4) this set
of boundary conditions constitutes the macro—micro localization condi-
tions (mml). It is highly desirable for mechanical reasons (average of
the micro-work = macro-work) that the following Hill’s macro-
homogeneity condition holds true for all the fields o* and £* =&(w™)
satisfying the mml conditions

{o*e*) = Z*E" (5)

The fourth and last step consists of the homogenization procedure
itself. The micro-constitutive law is known and the relationships be-
tween micro- and macro-fields have been established. It now remains
to relate the macro-fields. This is easily done in a linear context but
turns out to be a difficult task in non-linear problems.

We now describe in detail a special method of homogenization
validt for periodic media.

2.2. Periodic Media

The case of periodic media is of special interest in view of the large
number of ‘repetitive’ structures encountered in industry, The choice
of the r.v.e. is readily made: V is chosen to be the basic cell of the
periodic structure (cf. Fig. 1). The localization conditions are directly
derived from the geometry of the composite: away from the boundary
of the sample the stress and strain fields conform at the micro-level to
the periodic character of the geometry:

o(x, y)e(o(x, y)) are V-periodic functions of y¥ (6)
From a mathematical standpoint u belongs to the space of fields with
+ We emphasize that the method described can be rendered rigorous through
an asymptotic analysis [2] [29] [35)]. In this sense the theory is exact.

+ We shall omit in the sequel the dependence of the micro-fields on the x
variable.
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Periodic Deformation. Elements of this space can be split into a linear
and a periodic part

PD(V)={ue H'(VP, u, = E;y; + v, ve HL..(V)’}1 (7

The constant tensor E occurring in (7) is precisely the macroscopic
strain tensor associated with u by (2).

The stress field & belongs to the following space of microscopically
self-equilibrated fields:

§e. (V) ={oe L} V)], div, =0, o.n(y) opposite
on opposite sides of V}

Therefore the mml conditions for periodic media reduce to (4) and
(6), i.e.
oeS(V), uePD(V) (8)

Let us emphasize that these mml conditions satisfy Hill’s macro-
homogeneity condition.

2.2.1. An Example: Elastic Perforated Media

Let us denote by V* the solid part of the basic cell V and by
a(y) = (@ (y)) its elastic coefficients. The main point of the procedure
is the localization process: for a given macro-strain state E what is the
induced micro-strain? The equations of the problem are:

o(y)=a(y)e(u) }
055 (V), uePD(V), macro-strain=E

Using the definition of PD{V), we split m into a linear part Ey and a
periodic part v. Then by Hill’s macrohomogeneity condition (5) we get

{oe(v*)) = ZE* = 0 for every v* in H}(V)? since E* =0

9

Therefore v is the solution of the following variational problem

ve H...(V)? and for every v* in H,‘,e,(V):’}
(ae(v)e(v*)) = —(@aEs(v*}))

The second member of (10) can be identified as a concentrated loading
on the boundary of the heterogeneities. Because of the condition of
periodicity, (10) is not a classical boundary value problem. However it
is possible to prove that it admits a solution [6]. Since (10) is a linear
problem with respect to E, its solution v can be decomposed along the

+ HL.(V) = {periodic elements of H'(V)}.

(10)

-r
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basis formed with the 6 following elementary solutions X;
E = E;I; where I; is defined as

Lihen = 3By + Binbic)
v = E,;x; where x;; is solution of (10) with E=1;
e(u) = E+e(y) = (I; +e(x) E; = I+e(x)E (11)

This last equality completes the localization process: the micro-strain
e(u) can be computed in terms of the macro- one E. The forthcoming
example (see Fig.2) gives a few numerically determined ¢lementary
fields x;;. -

The fourth step (i.e. homogenization) is readily done through the
averaging of the micro-constitutive law

o = ae(u) = a(l+ e()))E
3 = {o)={a(l+e()YE 12
a"” = (a(l+e(0)

Remark 2: 1. Other mml conditions lead to the same type of
elastic boundary value problem with any kind of ‘classical’ boundary
conditions. Hill’s equality (5) was the main point used there.

2. A localization with respect to the stress can be performed. For a
given macro-stress X, we can express the micro-stress o(y) as a linear
function of % [34]

afy)=C(y)% (13)

We are able to find the actual micro-stress state induced by a macro-
one and to detect possible micro-stress concentrations. This is the
fundamental goal of the localization process.

3. The example under consideration in Figs. 2, 3 and 4 originates in
the work of Litewka and Sawczuk [20] where anisotropic damage was
to be modelled. The basic cell, together with a few, numerically
computed, strain and stress localizations are shown. The agreement
with experimental data is good and shows how well the homogeniza-
tion theory accounts for anisotropic behavior.

2.3. Rigid-plastic Constituents
In this section we assume that the constituents are rigid plastic and that
they follow the normality rule
o(y)eP(y), (&), a*—-a(y)=<0 Va*eP(y), VyeV
(14)
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Fic. 4. Young’s modulus E(e) in the direction of traction.

Since the micro-stress field is constrained, its average, the macro-stress
3., must be constrained too. Any admissible macro-stress £* is neces-
sarily related to a microscopic plastically admissible stress field satisfy-
ing the mml conditions. In the periodic case this leads to the following
definition of the macro-vield locus

Prom = {3* Jo™(y), 0% So(V), (@*)=32* o*(y)e P(y) ¥ye V}

(15)
We claim that the normality rule holds true at the macro-level, i.e.
Sepm, (B, EF-3)<0 VI*eptm (16)

Indeed 3 clearly belongs to P'™. Moreover to any £* element of P"*™
we can associate a micro-stress state o*(y) satisfying (15). Then by
virtue of (14) and with the help of Hill’s condition

0=(&(y), o*(y)~o(y))=(E, £*-3) amn

Remark 3: 1. Once more, Hill’s condition plays a central role in
the proof of the macro-normality while the periodicity is a technical
point.

2. If we assume that the bonds between the constituents are plastic,
i.e. that the stress vector at the interface S is constrained

o.n{z)e P(z) VzeS (18)
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Then the macro-yield locus is given by
Prm = {3 [30™(y) € Spe( V), (6™)=2%, o(y) € P(y),
o.n(z)eP(z)Vy, ze VXx8§}

3. If stratified materials are under consideration, proper use of the
mml conditions permits the identificationt of P™™ as:

Phom={2|2=ca2‘1’ 2?3=2i3! i=1,2,3,E°EP"}

where P* and ¢, respectively denote the yield locus and the concentra-
tion of each constituent (the directions y, and y, are the invariant
directions of the stratification).

4. For the practical determination of P"™™, a limit analysis problem
on the rv.e. V is to be solved: the loading parameters are the 6
independent components of the macro-stress tensor. This limit load
analysis can be performed either through a static approach (as
suggested by (15)) or through a kinematic one: P™™ is equal to the
intersection (E varying) of the half spaces defined by

e — Jhom/y
3. such that SE< ..E;:%%vy ) {mr(y, e(w)))= 7""(E) {19)
macro-strain

i

where w(y,.) and #"™ are respectively the support functions of the
sets P(y) and P"™, If 3 and E denote the actual macro-stress and
strain we have

aﬂ_hom

=—g B (20)

The preceding definition of P*™ using 7"°™ has been used in various
settings. For instance, in the context of porous materials, Gurson [12]
proposed to compute 7"*™(E) by mean of a Riesz’s approximation. V
was chosen as a cylinder or a sphere and uniformity of the strain on ¢V
was the assumed mml conditions. The velocity fields entering the
Riesz approach were inspired from elastic solutions of the probiem or
from previous Rice and Tracey’s work. Since the infimum in (19) is not
hom

necessarily obtained for these fields the value obtained for o is
overestimated and the set P™™ is approximated by the outside (upper

T This result was first established by De Buhan [5] in the two-dimensional case
with another method of homogenization.
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bound). In this sense Gurson’s model overestimates the carrying capac-
ity of porous metals.

5. We shall see in the following paragraphs a simple way of deter-
mining P"™ using an elasto-plastic problem.

2.4. Elasto-Plastic Constituents

Elasto—plastic constituents give rise to a more complex homogeniza-
tion problem, since the residual micro-stresses due to the incompatibil-
ity of the anelastic micro-strains, have a micro-stored elastic energy,
and therefore induce a hardening of the material. For a suitable
description of this hardening an infinite number of internal variables
(namely the whole set of the anelastic micro-strains) is required (see
ref. 33). This kind of theoretical result is of little practical importance.
However more specific information can be obtained on the macro-
response to a specified loading and in the case of approximate models
involving a finite number of internal variables.

Consider first the case of the macro-response to a specified loading.
As a typical example we assume that the macro-strain rate E can be
kept constant (equal to E°) and we investigate the macro-stress re-
sponse. If we take the elastic part of the behavior to be linear, the
problem of localization (determination of the micro-fields) becomes

A(y)o(y)+E°(y) =elu(y) =e(®)+E°
ae S (V), ve HL. (V) 21)
oc?={o|o(y)e P(y)Vy}

Use of the maximal work principle yields the following variational
formulation for o

oeSL(VINP, VoreSL (VINP: } 22)
(A, o*— ) =E(g*—a)= (E°, Z*-3)

Solving (22) and averaging the micro-stress response gives the macro-

response %(t). '
If o has a limit o.,T as t tends to +c, we get
z e Phom VE* € Phom:

0=(E°, *-3%.) }

+ Such a result can be proved under geometrical assumptions on P(y) using

Haraux’s result [14] on asymptotic behavior of solutions of evolution equa-
tions.

(23)
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Then 3. is on the boundary of P™™ and E° is an outer normal
vector to P"™ at 3,.: we thus obtain another way of determining P*°™
by solving an elasto—plastic problem with periodicity conditions and a
fixed loading concentrated on the interfaces of the constituents (this
last part can be easily deduced from the study of (21)).

2.5. Approximate Models

Knowledge of the actual macro-constitutive law requires knowledge of
an infinite number of internal variables, namely the whole set of
anelastic micro-strains. However some simplified models, with piece-
wise constant anelastic micro-strains can be proposed. For the sake of
simplicity we shall assume in the sequel that the basic cell is made of
two constituents, a matrix and a fiber, and that the aneclastic micro-
strains are constant on each of them:

€ (v) =En0.(y) + E{0(y) (24)

where 8,,(y)=1 in the matrix, 0 in the fiber (similar definition for 8;).
The micro-constitutive law is now

e(w)=E+e(v)= Ao+ef = Ac+EL8,, +Ef6, (25)
Setting a= A" ! we get
o=ac(v)+aE—aE @, —aEfo;
oS (V), veH. (V) }

The problem (26) bears a strong resemblance to (10), and since it is
tinear with respect to E, EX Ef its solution v can be split into

v=Ex+Eq X+ Ex¢ 27)

where x is the array of elastic localization fields defined previously by
(10) and (11). x%, and x; are solutions of

xXhe HL.(V)® and for every v* e H. (V)
(ae(xm)e(v*)) = (aB,,.e(v¥)) }

{similar definition for x7).

(26)

(28)

We get the micro-strain as

() = E(+e(x)) + Ege(x;) + Efe(xt) (29)
We recall that the micro free energy amounts to

pw(e(u), £7) = Ja(e(n) — €")(ew) — €7)
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and that the macro free energy is the average of the micro one. Thus
with the help of (24) and (29), the free energy can be expressed solely
in terms of E, EX, El:

pW(E, EL, Ef) = (pw(e(m), 7)) (30)

In the general case of heterogeneous elastic properties it should be
noted that the macro-stress can be derived from (25) and (29). We
obtain

2 =(o)=(o(e(x)+ D)t
= a""E - ca(e(0) + D)EF — cfale(x) + D) En

where ¢, ¢,, are the concentrations of each constituent and where { ¥
denotes the average on the fiber. Therefore the anelastic macro-strain
amounts to:

EP = AP ca(e(x) + DYEF + cola(e(x) + D) En]
7(: CfEll') + CmErr;]

The anelastic macro-strain is not the average of the micro one. Indeed it
can be proved that

EF = (Ce") = A"™a(e(x) +De") 31

where C is the stress localization tensor defined in (13).
In the case of homogeneous elastic coefficients the array of elastic
correctors x vanishes and the following simplifications occur:

Ef = ¢ ¥ + ¢ EF ={e")

SW(E, B, ) = Sa(E~ ENE-EN-+ (252 o )a(Ef, - EF)(EL~ ED
(2)

where a = c{e(X{ ) = —Col€(X{ Dim
It should be noted that the hardening term of (32)

(5m— o), - ED(EE - ED)

is always positive. This positive hardening is precisely the elastic
energy of the stresses due to the difference of the anelastic strains in
the fiber and in the matrix.

+ We make use of Hill’s condition.

Local and global aspects in the mathematical theory of plasticity 293

Anticipating Section 3 we can observe that the macro state variables
are E, E., Ef. Computing the associated thermodynamical forces,
namely the partial derivatives of gW, vields:

8w oW def _oW
T P = (O = Iy P = (0= 33
g~ PIEE (Fm= 2, P R O)=% (33)
Moreover we derive the following relations from the normality law
averaged on each constituent:

(EF, S*—3,)=(",3*~a).<0 forevery S*cP,, } (34)
(BF, 3% —3) = (", Z** —g), <0 for every S**c P,

where P,,, P; denote the yield loci of the constituents.

We are thus in the following position: starting from elementary
(elastic perfectly plastic) constituents, we derived a macro-model in-
cluding a larger number of internal variables. This model does not
reduce to a classical one. However it satisfies the normality rule in a
generalized sense. Indeed if we set

o=(E;, ED), A=(Z,, %,

the macro-constitutive law becomes

P=P xP

IW W
3 =5 E (E, o), A=—p - (E, ) equations of state

complementary laws

(35)

A e P and for every A* in P:}
(o, A¥*—A)=<0

The macro-model is a Generalized Standard Material (GSM)

Remark 4: In this section the thermal coupling at the micro-scale
has been neglected. In particular the question of deriving macro-
thermodynamics (including a suitable definite of the macro tempera-
ture) from micro ones has been avoided. This important point is partly
discussed in ref. 7 but remains largely open.

3. LOCAL GSM THEORY

The present section is devoted to the purely macroscopic study of
Generalized Standard Materials (GSM) with the help of macroscopic



294 Pierre M. Suguet

thermodynamics.t The existence of such materials was established in
the previous section where the occurrence in purely macro models of
internal (micro-structural) variables was explained by macro—micro
mechanics.

3.1. Generalized Standard Materials

The deformation of a continuous medium is a particular ther-
modynamical process which must be achieved in agreement with the
two fundamental laws of thermodynamics. We assume here that the
whole history of the medium is contained in the current value of a
finite set of state variables x and that the thermostatic concepts of
entropy s, temperature T, internal energy u, free energy w, extend to
thermodynamical evolutions.f As far as the medium undergoes in-
finitesimal transformations,§ the state variables can be easily identified:
they involve the infinitesimal strain £ and other physico-chemical
variables e {internal variables)

x = (e, &), w=wx,T)... (36)

Applying the first and second law of thermodynamics yields the
Clausius-Dubhem inequality

u=ulx, s),

d =uIRé+Ad—q%IBO (37)

where d denotes the total dissipation, q the heat flux, o'® is the

irreversible part of the stress while A is the array of the thermodynam-

ical forces associated with a
aw

of=p—,

ow
A=—p— uations of state
JE P o (eq )

(38)
Assuming classically that the thermal and mechanical dissipations are
decoupled yields their positivity in any real evolution

dlzolké-}-A‘i;O dzz_q??{) (39)

1 Following the analysis of Halphen and Nguyen [13].
1 This constitutes the basic assumption of the local accompanying state model

(13 [91.

§ For finite strains see the accounts of refs. 13, 22 and 30.

T S

-y
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The complementary constitutive laws relating Y = (g, e, q) and X=
(o™, A, —VT/T) must satisfy (39). In classical thermodynamics of
irreversible processes [10] these laws are supposed to be linear and
Onsager’s relations imply the symmetry of the involved matrix:

Yi=L;X; L;=1L; (40)
A natural generalization of (40) consists in assuming that a mechani-

cal and a thermal potential of dissipation (€, &), @4(q) exist, such
thatt

d
=28, A=Leq, L=l

3 Yy T~ o @ @Y

If moreeover the thermodynamic functions u(e, «,s) and (g, &),
Pum(q) are positive convex functions of their arguments the material is
said to be a Generalized Standard Material (GSM) [13].

Remark 5: 1. The positivity of d, and d, (4) directly follows from
the convexity of ¢ and ¢y,

2. Taking ¢4 = 1/2k |q|* yields the Fourier's law:

vT k
=-k—=—-—V¢ =T-
q T T, where 0=T-T,.

3. Introducing the Legendre-Fenchel transforms ¢* and ¢}, of ¢ and

¢ One gets an equivalent formulation of (41)

ap*

c=— ('R 9% __deh vT
En a2 (D

T
(42)

4. The rate independent materials constitute an important subclass
of GSM. For these materials the law (41) does not depend on the scale
of time, i.e. d¢ is homogeneous of degree 0 with respect to (£, &). Thus
¢ is homogeneous of degree 1 with respect to (£,&). A simple
argument of convex analysis implies that ¢* is necessarily the indicator
function of a convex set P. Furthermore the complementary laws (42)

+If the potentials are not differentiable, the following relations must be
understood on the sense of subdifferentials (see any standard book on Convex
Analysis).
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expressed in a generalized way form the principle of maximal
dissipation:
There exists a closed convex set P such that
™Mo, A)=0 if (o™ A)eP, + otherwise
(o'®, A)eP and for every (o*, A*)e P (43)
(&, 0" — ™)+ (&, A*—A) <0

P is the generalized plasticity locus.

Most of the time ¢ does not depend on & and (43) reduces to Ae P
and for every A*e P (&, A*— A)<0.

In the framework of GSM, rate independence is equivalent to the
principle of maximal dissipation.

3.2. Examples

The GSM theory is confirmed, not only by its mathematical structure,
but essentially by the number of classical or non-classical situations
abiding by it. A few of them are briefly illustrated here through three
(isothermal)} examples.

3.2.1. Damage of Ductile Metals [27]

Ductile fracture in metals involves considerable damage at crack tips,
through nucleation, growth and coalescence of voids initiated by
inclusions. In order to account for this effect an internal variable
describing the damage is introduced into a model of plasticity with
hardening. For the sake of simplicity both effects {damage and harden-
ing) are assumed to be isotropic. We set:

a=(e", D,p) (44)
pw(e, o) = H(e—eMa(e —€”) + h(p)+ m(D)
The equations of state are
dh dm
R_ —gP == - =
o"=ale—¢P), R dp (py, Y ib (D) (45)

The effect of porosity on the elastic moduli has been neglected since
we are mainly interested in the ductile behavior of the material. The
presence of microvoids causing damage results in a sensitivity to
pressure of the plasticity criterion. More precisely we assume that the

T Sometimes referred to as ‘principle of maximal work’.
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plasticity locus is given in the space of generalized stresses as:

P={o""=0, A=(o, Y, R) satisfies: Jo(a)+ R+ Yg(o,) <O}
(46)

The potential ¢* is the indicator function of P and the complemen-
tary laws are derived from the assumption of GSM
D

é"D=‘\Ju(ro)= £n=AYg(o.), P=A  D=xlo,), A=0
2

(47)

p is identified as the cumulated deviatoric plastic strain.

The form of g can be derived through elementary considerations.
Because D is related to the volumic fraction of microvoids, it is thus
related to the density p of the ductile material

D=D(), ic. D:‘;i; () = Aglo) (48)

If we neglect the change of volume due to the elastic part of the strain,
conservation of mass yields:

p+3pel =0 (49)
and, after due account of the complementary laws, we obtain:
] -p
&XTm 34 (p)Y
P

But Y = —(dm/dD)YD(p)) is a function of g only. Thus the two sides of
equality (50) are constant and homogeneous to the inverse of a stress
(i.e. of the form c/o,) where o, is the yield stress of the undamaged
material. Integrating (50) yields:

Co-m)

Go

Coming back to the complementary laws we get

gloy) = exp (

D = Ay exp (Cam) (51)

gy

t Jx(o) =Vobar. o® is the deviatoric part of @, o, is its spheric part.
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The expansion rate of the damage (i.e. of the void fraction) is propor-
tional to the exponential of the triaxiality ,,/o%. It is remarkable that
this result, established here through a completely macroscopic analysis,
with the simple assumption (49), has been derived through a more
precise micromechanical study by Rice and Tracey [26] for high
triaxial stress states and by Gurson [12].T These latter studies also
provide a precise estimate of C and ».

The reader is referred to Rousselier [27] for an extension of the
theory in the domain of finite strains, together with a study of the
stability of the material described by this model.

3.2.2. Viscoplasticity

The previous example was concerned with rate independent laws. The
effect of time can however be taken into account if one cares to
consider viscoplastic laws. No account is given here for damage effects
although it would be easy to supply one. Kinematic hardening is
described by a tensorial interna! variable B. Therefore

o= ("B, p)
pw(e, o) =35(e — e)a(e — ")+ h{p) + k(B)

The state laws read as
" dh
A.=0o =a(e—¢€"), R =—£(p), B=—Dgk(B)

If we denote by P the preceding yield locus {46}, the viscoplastic
potential ¢, is

© (12(0'+ B)+ R)'““

S n+1_
Pn(A) = Y (p(A)) 1

Tq

where jp is the gauge function of P.
The complementary laws are
o M (J2(0+B)+R)" o”+B°
£ =— s
J(or+B)

B-er

0y Ty

pot (J2(0+B)+R)" 52

Ty Ty

t Gurson established a dependence on cosh (e,./o,). But for high triaxial states
{underlying assumption here) cosh=exp.
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Fremond and Friaa [8] introduced a generalization of this law which
turned out to be useful in limit analysis problems.

3.2.3. Cyclic Viscoplasticity

Under cyclic loadings the previous model fails to properly describe

experimental data. Chaboche [4] obtained a good agreement with

experimental data through the following modification of the law (52)
99

n . o,
(A), e

%,
oo P aR’

B

& B=—2+nBp (53)
The term nBp is likely to alter the standard form of the law. However,
if we admit a dependence of the potential on the state variables, it is

still a standard law. Indeedt let us set

n

2
¢ (A )=

(12(0+B)+R+ B .B—%Dﬂk. Dﬂk)"“

nt+l

The additional term (n/2)B.B—{n/2)Dgk Dyk vanishes in all real
evolutions, according to the equations of state. But the new com-
plementary laws are

Ty

.p_ 00, o, . 0¢q IP,
P = A = A = — = —
e A e o (&), P=3R (A, ) IR (A)
. 3@, e, ©n (I2(0'+B)+ R)" 99, .
—ZPa A )= (A)+ B=2A)+
B oB (A, @) aB @A) n+1 oo B (A)+nBp

which is exactly the desired law (53).

Comments. Chaboche’s model leads us to address the following
mathematical problem: a general form of complementary laws could
be

a=h(A, o)

Is it possible to add to h a suitable function g(A, e}, vanishing in every
real evolution, i.e.

(o2
g Paa,a

t This remark is due to J. L. Chaboche.
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and giving to the law a standard form

h(A, o)+ g(A, o) = %%t (A, o)?

4. GLOBAL GSM THEORY

4.1. Global Variables

When dealing with structures (i.e. with a whole body) it can be
essential to consider state variables o which are not locally defined.
For instance they can be geometrical parameters of the structure (think
of optimal design or of cracked bodies), averages of local variables
(think of shells or of homogenization), free boundaries, etc. Consider-
ing such global variables requires the introduction of a global ther-
modynamical formalism.

We assume that the system is endowed with a potential energy
F(u, o) where u is the displacement field in the structure. We say that a
set of global variables e is complete if the specification of this set of
variables together with the specification of the loading suffices to
determine the displacement field in the structure. For such a set of
global variables we can express the total energy in terms of a

v=ulg), Wia)=Fule),a) (54)
We define global thermodynamic forces as
aw
A=—— 55
A P (55}

and the global GSM assumption is the following: there exists a convex
functional ®*(A) such that
ap*
x=—- (A 56
NG (56)

Once more we shall emphasize the role played by materials that
satisfy the principle of maximal dissipation, for which ®* is the
indicator function of a convex set P:

AcP andforevery A*cP, (a, A*—-A)<0 (57

t This equality is to be understood in the sense of subdifferentials for non-
differentiable ®*.
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4.1.1. Examples

(a) Cracks (Fig. 5(a)). Consider in a two-dimensional context a
linear crack of length « in an elastic body. e is a global state variable
of the structure since, once a is known and the loading is specified the
displacement field is derived by solving a classical elastic problem

a*=0onT,
[u3l=0onT,

W(a)= Min j lag(w*)e(m®) dx — L Fu* ds (58)
Q, 1

o

The force A is the energy release rate. If we define a set P as
P={A"| A%<~} (59)

the corresponding rate independent law is a law of brittle fracture,

(b) Damage (Fig. 5(b) and (c)). Bui and Erlacher [3] introduced a

-
T
E ﬂa healthy
9
AN
F,.. ’
4
B |
IRBEBE damaged zon€
a b.
o
' £
[ d.

Fic. 5. Global variables.
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law of total damage which goes as follows: Consider a structure which
contains a ‘healthy’ linearly elastic zone and a totally damaged zone
which is unable to support any load (=0 in it}. The damage front o
(free boundary) is a giobal variable of the structure since, once it is
specified the displacement field in the healthy zone is derived as the
solution of a classical elastic problem, while the front g is stress-free

W(a) =Min J jae(u¥)e(n™) dx— Ir Fu* ds
u a .

The force A is the density of elastic energy on the damage front, & is
the normal velocity of displacement of the front. If we choose a convex
set P in the form (59) the rate independent law {(57) vields

a(x)=0 if Zae(u(x)e(@(x)<y
a(x)=an(x)A=0 if lae(u(x))e(u(x))="y

In the one-dimensional case, the stress—strain relation obtained is
plotted in Fig. 5(c).

(60}

(c) Homogenization. Considering the basic cell as a (micro)structure
we claim that in the approximate model under consideration in Section
2.5, the set a=(E,E}, Ef) is a global state variable for the
(micro)structure. Indeed, once it has been specified we are able to
derive the displacement in the (micro)structure by (29), and the global
energy by (30). The set of forces A is (¥, %, 3, and the rate
independent law (57) is (34). We can consider additional geometrical
parameters of the microstructure: porosity of voids, surface of cracks,
shape of inclusions. These micro-global variables become, through the
homogenization process, macro-local variables.

(d) Friction. With the notation of Fig. 5(d), the displacement field @
on the part Iy of 3£} is a global variable for an elastic body: once w is
specified, the displacement in the structure is the solution of

o*=aonT,

W(a)= Min J lae(u®)e(@™) dx - j;_ Fu*ds 61)
(1] 1

The force associated with @ is —omn . Let us set

P={A*||Afl=<k}t

T Ar is the tangential part of the vector A.
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The rate independent law (57) yields Tresca's friction law uy=0,
B, =0 if |(o.0)d <k, vy=—-A{o.n), A=0if [(c.n)l=k.

4.2. Evolution Problems for GSM
The set of eqns. (55) and (56) can be written:
ad* [ oW
-5 ( o 0)=0, eO=a 62)
A similar evolution equation can be stated for A. It is to be noticed
that the equations governing the evolution of phenomena as different
as plasticity, damage, brittle fracture, friction, etc., are similar. The
discussion of (62) in a general context has not been done and is an
open problem. Let us just mention two simple cases where existence
and uniqueness of a solution of (62} can be easily established:
aq)*
(a) If TN "
viscoelasticity) eqn. (62) reduces to a differential equation. Global
existence and uniqueness of a solution are proved with the help of the
Cauchy-Lipschitz theorem.
ad* { W . . .
(b) fa— A (-—; (o, t)) is a continuous coercive operator from
a reflexive Banach spa;:e V into its dual space V' where VCH (V'
(H is a Hilbert space), and provided that it exhibits a smooth depen-
dence on t, a standard theorem on evolution equations ensures the
global existence and the uniqueness of a solution of (62).
Consider for instance a linearly elastic solid lying on a support 'y
with viscous friction (notation of Fig. 4):

w . _
and % are Lipschitz operators (this is the case of

=0, or=—Aloc.m)y on T} (63)

Considering e =wu; as a global variable, we identify the associated
force as A ={(—o(a}.n); |, where o{g) is derived from u(e) by the
elastic constitutive law. u(e) is obtained as the solution of an elastic
problem similar to (61).1

Therefore the viscous friction law is a global GSM law with

a*(8) =3 AP

+ The constraint for the minimization is now uy=0, er=a.
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Setting V =H"Y4I,)?, H=L%T,)% V'=H Y4[,), we see that

ad* (AW

o (o @ 0) =A@ ne
It can be easily shown that

(o . m)1{ey) — (o . m)r(@)iv- < C oty ~ ol v
(o . m){a)— (o . m)(ar), @ — ey v=C7 lee, — GZR/

which establishes the continuity and coercivity of the operator under
consideration. If the external loading (F) depends smoothly on ¢, the
above mentioned theorem ensures existence and uniqueness of a
solution for viscous friction.

Specific attention must be paid to materials that satisfy the principle
of maximal dissipation (57):

G calp(A) (64)
The evolution problem, which now consists of the set of equations
(55) and (64) is a highly non-linear one, and as such it remains

unsolved? in the general case.
Debating of the existence of the ratesi & and A is an easier task.

4.3. Variational Principle for & [25]
a is the solution of the following variational problem

acolp(A) and for every o cdlp(A)

(E:;:X (o0, e, o™ — a) (

dee ot '!) ©

and therefore has the following variational property:
& minimizes among all admissible rates a® caIp(A) the functional

1w W
+ *
7 g2 & et +o (@ e (66)

Proof {24] [25]. By the principle of maximal dissipation
(A()—A*, a*)=0 forevery a*cdl(A), A*eP (67)

+ Moreau [23] and Brezis proved the existence and the uniqueness of a
solution for A, provided that Wie) is a quadratic function.

i Since aft) i is not necessarily derivable with respect to ¢, the rates o, A are the
+ +

—d;_’ dt

right derivatives (‘future’ rates).
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Taking A*= A(t+dt) in (67} and dividing by dt yields
(A, 0*)=<0 forevery o*cdlp(A)
On the other hand it can be shown {24] that
(A, @)=0
Therefore

0=(A 0" -8 =~ (L (0, 0 a* - @) - (Z¥ (00,4 -q)

oa’ dox 3t

which completes the proof of (66).

4.4, Variational Principle for A
In most examples A satisfies a linear constraint of the type:
Aes(H={A* LM =1 (68)

where f is a constant quantity, L is a linear operator. Therefore the use
of a Lagrange multiplier accounting for (68) permits inversion of the
relation (55) between « and A:

g—aaE( A, ) +e(r)

where W* is the I.;egéndre transform of W, e is the Lagrange multi-
plier orthogonal to S(0) (take f=0 in (68)). Thus

82W*A+82W*+é
A%~ dAar ~

Q:

It is to be noticed that because of the linearity of L, A belongs to S
and that e is orthogonal to S(0). Moreover, since A must belong to P,
A must belong to the projecting cone P(A). Thus we get the following
variational formulation for A

AcP(A)NSH and for every A*e P(AYNSH):

B honaR)(eanss) o

2

Therefore A has the following variational property: A minimizes
among all admissible rates A* EP(A) NS(H the following “functional

1¥wW* fan WX

(—A, DA* (70)
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4.4.1. Example

Consider an elasto—plastic body clamped on its boundary and submit-
ted to a volume loading f. The field of anelastic strains g = (€°(x)), cq is
a global variable for the structure since, once it is known, the displace-
ment in the whole body is known as the solution of

o1
Wia) = I’m=1\»/01mm 2 I ale(n*) ~a)(e®) —a) dx — J fu™ dx
on o - a
The force A associated with « is easily identified as the field of the
stress tensor. The class of materials obeying (57) reduces to elastic
perfectly plastic bodies. The variational principle (70) is known as the
Hodge—Prager variational principle [18], and since the operator
*W*
BA*?

a1
=a

is positive definite, this principle ensures the existence and the unique-
ness of the stress rate in a space of square integrable fields.

The variational principle (66) is known as Greenberg’s principle

[11]. However the involved operator

Fw

aaz

(71)

is not definite, and neither the existence nor the uniqueness of strain
rate ¢& = (¢€°) can be proved in a classical framework. Due to the lack of
coercivity of the above mentioned operator (71) the functional (66)
grows linearly with &* at infinity. ‘Therefore its natural space of
definition merely requires & to be integrable and not square integrable,
which would classically be the case in this kind of variational problem.
In the case of perfect plasticity this remark has led a few authors
[31, 32] to introduce in 1977 the space of vector fields with Bounded
Deformation: )

BD(Q)={u|u= (), u; e L'(QD), g;(w)e M* (@)1 =i, j=<3}

where M'(£)) is the space of bounded measures on (). BD((}) provides
the good functiona! framework to prove the existence of a solution of
the variational problem (66). One has to notice that elements of
BD((2) in general, and solutions of (66) in particular, can be discon-
tinuous fields even before the limit load of the structure is reached.
This mathematical anomaly has been previously noticed through a
completely different approach by Zyczkowski [38].
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5. CONCLUSION

This paper intends to focus the attention on the progress achieved
during the last decade in the field of mathematical plasticity. This
progress results in a better understanding of the structure of the
constitutive laws and of the mathematical properties of the related
boundary value problems. Several open mathematical problems have
been addressed which will probably be solved within the next ten years
with the help of one of the tools presented here: homogenization,
general standard materials, global variables.
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APPENDIX: HEGEMONY OF CONVEXITY?

This paper might appear to the reader as an anthem to convexity if we
were not aware of the elementary and necessary restrictions to be
brought into the theory.

{a) Convexity requires the space of states to be a linear vector space.
Consequently it is inadequate for elasticity at finite strains: for in-
stance, in an incompressible material the principal strains A; must
satisfy

(1T+AN1+A)(1+A,5)=1

which is a non-convex constraint, both on the A; and on the displace-
ment field. Other incompatibilities (mainly with the frame indifference
principle) have been pointed out by Hill [17]. However this argument
fails in plasticity, which is concerned with strain rates, hence with
linear functions of the velocity fields when computed in the correct
configuration.

(b) Convexity is closely related to stability, each of these notions
mainly containing the other one. On the one hand Drucker’s work
shows that maternal stability implies convexity of the yield surface and
normality of the flow rule. On the other hand Hill {17] and Nguyen Quoc
Son [24] established for a plastic material exhibiting a convex yield
surface and obeying the normality rule, a stability criterion satisfied
under reasonable assumptions for the hardening. Consequently micro
and macro instabilities could need a non-convex investigation.
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(c) Convexity is unable to account for the behavior of frictioning
systems (Coulomb’s law) and of soils. For materials obeying a non-
associated flow rule Telega [36] used Sewell’s account to extend the
problem to a convex one and to establish variational principles. When
the normality law fails to hold together with the convexity of the vield
locus, other tools are to be developed: this was done by Salencon and
Tristan Lopez [28] who extended the notion of limit analysis.

Finally we do not claim universal validity for convexity. But address-
ing the question ‘convex or non-convex’ defines the proper nature of
convexity: it is a reference property.
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ABSTRACT

Parameters governing local inelastic deformability in an elastic~plastic
discrete structural model are determined, in the sense of Bayesian
stochastic estimation, on the basis of information on meaningful dis-
placements in the inelastic response of the structure to a given quasistatic
loading history. This structural identification or ‘inverse’ problem is
solved by an extended Kalman filter method. The formulation of the
solution procedure consists of the following phases (corresponding to
subsections of Section 3): state space representation of the model;
linearization of the state equation; linearization of the output equation;
weighted least square approach to the parameter estimation; recursive
parameter estimation; extended Kalman filter equations; iterated ex-
tended Kalman filter. Numerical examples concerning frames illustrate
and test the methodology adopted.

NOTATION

Bold-face symbols denote matrices {(and column vectors). A tilde
means transposed, 0 a matrix of all zero entries. Vector inequalities
apply componentwise. The matrix of the derivatives of vector y with
respect to x will be indicated by dy/ax, thus ordering columns according
to the x components. The subscript ¢/ means estimate of a given
variable at time ¢ based on data up to time 1.
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