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Abgtract. A modelling of mechanical hysteresis phenomena, accounting

for internal locking of materials is proposed. A mathematical discussion

of ideal locking materials is given. A special emphasis is set on the

locking limit analysis.
Résymé. On propose un mod&le d'hystérBsis mécanique, tenant compte des
effets de blocage interne de la mati&re. Le cas des matériaux 2 blocage

est discutd seus un angle math&matigque. On porte une attention particulis-

re 3 l'analyse limite de blocage.
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1. BYNOPSIS

Locklng materials have been lntroduced by PRAGER in 1957-1958 inp

order to account for internal unllateral constraints in

1, 2, 3

the mechanics of

continua » For this type of materials the stress-strain curve

exhibits an hardening part Tevealing an internal locking of the matter.

This hardening effect can be purely elastic (rubber) or accaﬁpanied by

plastic effects {cristals). In the last case, hysteresis phenomena simi-

lar to those observed in electro~magnetism, take place.

’0’

'Y

—

purely élastic

—_

. ’// plaétic effects

E

-

Y-

/

- Figure 1} -

The present work, devated to a dlscu531on of a few asPects of locklng

and hysteresis phenomena, is twofold :
~ the first part proposes a possible modelling of hysteresis pheno-
mena. Constitutive laws are derived and their striucture is discussed, A’

few open mathematical problems are addressed,

i 1
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- the second part is devoted to ideal locking materials, as consi-
dered by PRAGER. We focus the attentionron what 1s called here the
locking limit analysis, the aim of which is to determine the set of ad-
missible imposed displacements before complete locking. The example of
torsion of cylindrical bars is discussed : it shows that stress singula-—

rities are likely to occur.
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2,  CONSTITUTIVE LAWS AND MECHANICAL .HYS'fERESIS

2.1. Rheological models.

The classical rheological models are well known : spring, dash;pot,

glider. We introduce a locking model which exhibits the follewing cons-

titutive law

le] <e and

< = g=0
[+]

£

. This element called a fock, is used in more complex models.

Tdeal locking model

c - Figure 13-

PM. Suquet
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The constitutive law of ideal locking materials is :

e L e _
= + g . o =E¢g
{G ’ . (z.1)
le] <e , o =0 if [e] <e , ¥ =2 if le] =e ,1>0
g o [
Instead of imposing a given stress in A , one can imposge a given
displacement ud . This given displacement must obey

] < e

Therefore, a locking material cannot undergo any imposed displacement.
i 2 z . .
The determination of the admissible®imposed displacements is the object

of the Loching Limit analysis (cf. § 3.2)

Model with hysteresis

;

bmemc e e e

a. Model b. Loading-Unloading Test

-~ Figure 4 -
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345
The constitutive law of the model is the following EF :  locking of the lock
FEG : The glider is fixed
e P o L '

- o+ = + . -
* : i © o 7 The model exhibits an hysteresis behavion.

e _go
E E >

c j 2.2, 3-dimensional case.

Ideal locking material

. (2.2) .
eP =3 !op! if |Up| = GC » AZ0 The natural generalization of (2.1) goes as follows :
(o3
There exists a convex set B in the strain'space,_which the strain tensor
2 .
¢ =0 if |€p| <e is constrained to stay in :
P
le7] < € and , | o e s .
. o = At =S if [Pl =e , 2 20 )
p o
|e”] .
Moreover
We investigate the behavior of the model in a loading-unloading . .
' o,, =0,. + o,
experiment :: ij ij ij
o : . The spring is the only strainad elément e _ . . -
0a ] e 8p g b ; E Uij al]kh Ekh(u) (2.3)
AB ;. Gliding without elevation of the applied stress :
I | . . o € 31, (e (uy)
BC locking of the lock : the spring is the only strained B
element,
ced b load . rely elastic where I, is the indicator function of the set B in the space E of
CBD : ' The glider is locked : the unloading is pu
3 % 3 symmetric tensors of order 2 .
until the stress reaches - o _
DE : The glider slips without stress modification Remark . A typical example of set B is the, following
(1) o, is the yield limit of the glider. B-le€k |- K, < ey <)

@

Only volumic changes are comstrained. The class of locking materials

-
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described by this choice of B is that of materials with limited
compressibility. The case of incompressible materials is recovered with

a special choice ko =k, =0.

1

Locking materials with hysteresis

The natural generalization of (2.2) goes as follows
e P P 2
e..(u) = €., + €5, , g., =0;. + 0.,
1] 1) 1] 1] 1) 1]

e . _

17 = Mjkh %kn

. : Y [N
There exists a convex set B in the strain space (ZE) which the

plastic strain temsor is constrained te stay in

P es 02 = BIB(ED) B closed convex set in E

There exists a convex set P whiph the

in the stress space

& E)

first part of the stress tensor is constrained to stay in

sFep , P e BIP(UP) P closed convex set in E

Therefore the constitutive law, written in a condensed form, amounts

to :

o
+
=
m
]

e =€ t € , O =0 g y € Ao
Pes , o€ a1, (eP) (2.5)
FEP , P € BIP(GP) .
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We claim that the two constitutive laws have the same structure :

éhey both are generalized standand materials.

2.3. Generalized standard materials.

The theory of generalized standard materials, due te HALPHEN,
NGUYEN QUOC SON takes its roots into ZIEGLER's and MOREAU's works.
It prﬁposes a general framework for the establishment of cothitutive

laws, accounting for the twa laws of Thermodynamics (detailed eXposures

can be found in HALPHEN, NGUYEN QUOC SON °°, NGUYEN QUOC SON © ,

7 8 9

GERMAIN » GERMAIN, NGUYEN QUOC SON and SUQUET » SUQUET )

We admit the existence of a ﬁeﬁsity of free energy depending on the

)

state variables (e,u)(+

pw = pw(e,a) (p density of the body)

pw is supposed to be convex with respect to (g,a) .

The 4ifate faws define the thermodynamical forces

R 3w . bw
o poale.a) A=-p -5;1-(6.01).

R . .
¢~ is the reversible part of the stress tensar.

In case of a nondifferentiable free enmergy w the preceeding rela-

10 11

tions are to be understood in the sefise of subdifferentials ,

(+)

for the sake of simplicity we omit thermal effects. The temperature

T will not be listed among the state variables.
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- . ' Re
(o, — A) € paw(e,a) . (2.5) % o ac + BIB(E)
R -t=0

We admit the existence of a potential of dissipation ? convex

. . ) : ‘which is exaetly (2.3)
function of its arguments (£,4) , which yields the complementary Lows ‘

IR R 3D

. . e Remark. The ideal locking material is not dissipative (D =0) :
o =0-0 =53 (E,0) 4, A= = (&,6&) e . :
‘ it is an hyperefastic material.
or in a generalized sense :
Locking materials with hysteresis
: .. ' The stats i d o=« . The following choice of
(GIR’ A) € 3D(E,d) ‘ ‘ (2.6) e & vdrlables are f and o = £ e following choice o
) potentials is made
R s the i ibl £ : 2y L1 P oy P
o 1s ¢ irreversible part of the stress temsor.- pwle,e") = 5 ale — ef)(e — &) + IB(€ 3
In the framework of generalized standard materizls a constitutive '
. s , . Dz, Py = Tpeh) P
Law is specified by the data of the fwo thernmodynamical patentials ow P
and U . ' . The state laws (2.5) yield
It can be proved 6: 75 9 ihat the mechanical dissipation amounts to
- i - ‘ R :
IR : ' o =ale-ef) , A€ ale- ef) - BIB(EP) ‘ (2.7)

d =g £+ Ak

Application to the specific situation of locking materials.

The complementary laws (2.6) yield ) :

Tdeal locking materials
The only state variablg is the.strain = . The two thermodynamical - . crIR -0 , ac B(I;)(ép) e, ép < QIPtA) (2.8

potentials amount to

Therefore the total stress reduces to the reversible stress

) 10,11
P

_ 1
pu(e) = 5 aijkh kb ©ij + 1(e) .
- IP denotes the Legendre Fenchel transform of I
D(&) =0

The state laws (2.5) and the complementary laws (2.6) vyield
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Setting

e =e -, A= a ! s P =4, o= ate - ép) -¢Pe aIB(EP)

we ‘see that the law defined by (2.7)(2.8) takes the form (2.4) . The

locking material under consideration here is dissipative, and the mecha-

nical dissipation amounts to

d, = ARy Al =_cp &P
Remark. ZIEGLER and PRAGER 2 also considered a non newtemian fluid for

which the locking constraints acts on the strain rate & . This type of
fluid is also a generalized standard material. The choice of state

variables and potentials goes as follows

state variables : £
potentials : pw(g) = ¢(Tre)
D(E)y = I4(e)
the constitutive law amounts to
R %
g =-p Id where P = 3(Trey
IR .
g € BIB(E)
i.e. o €-p Id + 3I4(E) .
Remark. The interest of recognizing a generalized standard form in a

constitutive law is that general theorem on variational principles,
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behavier at infinity... have been derived in this general setting.

2.4, Evolution problem for a locking material with hysteresis.

We nmow tura to the evqluti?e boundary problem posed by a locking
material occupying a bounded domain g , Qubmitted to body and boundary
forces, to imposed displacements, and undergoing a quasi-static evolutionm.

In addition to the constitutive law

(2.4) the stress and strain

fields must obey further requirements

glJ = 1j(u) in § compatibility relations
90,
B;J + fl =0 in 9 equilib¥ium equations

J

d . .

ug = Ui on aﬂU imposed displacements on a part BQU of
g..n. = F, on  aq "imposed forces on a part 3f_ of BQ(+)
1] ] 1 F 4 F

The loading f(x,t) , Fd(x,t) . Ud(x,t) is given on [0,T] .

We first solve a purely elastic problem :

BUER
eL, _ el ij _
€5 = A Ok o 7, tpf =0
el _ood el _
i3 nJ = Fi on BRF R ul = U1 on BQU

Provided that : -

- 8 is a bounded domain with a Lipschitz boundary

()

are open and disjoint subsets of 39 e, u My = 30

BRU s QQF
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A = wl'z(o,r 3 L2(9)3) . e wl’z(o,r ; Lz(Bﬂ)a) .

Ud < Wl’z(O,T ; Hl/2(39)3)

, the elasticity matrix is symmetric, beunded and coercive,

, . , ) i el
the above elastic problem admits a solution (Ge AR

LrewhiZo,r s 12, P

et e w2o,m ; I (@) T

Setting

el

- - el
g=46=-0 and u=u-=u

we see that J , u satisfies the following set of equations

e(@) =Ag+ef , divo=0 in 2

'G.n=0 on 30, uw=0 on a0y,

For a given e in LZ(Q,E) we can associate the unique solution
9 in tz(n,E) of the preceding elastic problem @ .

G =-R Ep

This equality defines a &ineax, continuous self adjoint and maximal mone-
tone operaton R from 12(n.E) into itsels.

From the definition of o we derive

™ Lz(ﬂ,E) = symmetric 3 x 3 tensors of order 2 with components
in L7@)
(tt)

(@ -1'm?
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g(t) = - R eP(e) + (e in 12(Q,E)

Therefore the defenmination of the stness flefd reduces to the de-

fermination of the field of plastic 4znain4.(+)

We note that

alt) = oP(t) + o*(t) in 1%(0,B)
2 ) P ’ 11
where o (t) € 3Ly (e"(e)) .
and oP(r) € a(Th) (€°(e)) "
P L Y
B and TP are respéctively defined as

B

fo &€ LI(Q,E) , e(x) €8 a.e.x € Q)

P = (x€L2@,E) , 1(x) €P a.e.x € 0}

Therefore the field of plastic strains satisfies the foilowing nan-

Linear evolution equation in IZ(Q,E)

2T (tP(8) + 3L (P(e) + R &P(e) 2 o®H(o)

(2.9)
P - P
g (0) = €5
+ .
() Ueg(t) is a given guantity.
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- The resclution of this evolution equation seems to be an open problem.

' ; . 12
‘It bears some ressemblance with an equation discussed by VISINTIN in
a problem issued from phase tramsition, but where compactness methods

applied (this is mot the case here).

This problem being too difficult, we turn to an easier one.

Rate principles_for the plastic strains

"*Let us assume that the present state of plastic strain Proy s

known. We want to determine the xafe ép(t) of plastic strain.

P

Since e must belong to B , the rate &° is constrained to

stay in the projecting cone of B at ep(t)‘

*

5GP = (Mo <0 vaear, (M)

1Ly (M) N
a A field €& belonging to

2 B(s?) is said to be a Loching
E(sp) : | nate of plastic strain. '

- Figure ' 5 =

Variational principle for the strain rate &P

P minimizes among akblf Locking admissiblfe nates of plastic strains
the functional

Inf p (&) + &P, , - ), (2.10)
& € B (P(1)) L ' L
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Proof, We notice that

(s*,z)L2 <o ¥z a1y (P(e)

we shall use this inequality with gz = o

On the other hand

. L d d
€, 0N =g TP =g o=0
L
Therefore
* * *
(g, - £P) 2 = (cP e - &P 2 * (o*, - P 2
L L L
L
* .
< (cPhe - h ,
L
*x ‘ *x . *
But (g,e =~ éP) 2 = ~(ReP(t), e - &F) g * (oeg(t).s - B 9
L L L
Thus

.~ (Uea(t),a* - 5

1 (€9 - Tp &®) + ReP(),<" - e;P)L .

2 (0P - &P, ReP(o),d" - &P

R R T
L T .

2 2

L

=0

Remark. Due to the high nonlinearity of the thermodynamical potentials,

the variaticnal principles established in NGUYEN QUOC SON 13 or SUQUET 9

do not apply.
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2.5, Open problems., s

. Under which set of assumptions on the loading is it possible to

prove the existence of a solution of the variatiqnal principle (2.10) 7
. Same question for the evolution equation (2.9) .
. Consider a proportional loading
- Af AFd . lUd
We can easily conceive that for small A ‘equation (2.9) admits

a solution. Does there exist a limit value for A (similar to the plas-
tic limit load, or the locking limit load) ?
- Is it possible to discuss under general assumptions on the func-

ticnals ¢ and ¢ , the following evolution equation :

{4y + 3(a) + Ra 2 £(t) in a Hilbert space H

a{0) = o

where ¢ and ¢ are convex, l.s.c., proper functionals om B , R is

a linear, positive continuous operator from H into H .

Locking Materials and Hysteresis Phenomena
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PRAGER, namely ideal locking materials.

law

3. IDEAL LOCKING MATERIALS

We consider the hyperelastic materials introduced originally by

-Let us recall the constitutive

(3.1)

(2.3)

TR ot

°§j = 2 ikn Skn

e(u) € B

(U{L. ,E*.. - eij.(u)).< 0 .V e R 8

ii* ij

The free energy of the material reduces to its elastic energy

1

72 if £ &€8B

ijkh "ij “kn
pule) =

+® otherwise

‘ : T : :
A few assumptions on material datas ) ensure that pw 1is a convex

(+)

B is bounded and contains 0 as an interior point
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function, continuous on the interior of ite domain ; moreover its conju-

*
gate function pw satisfies

*
de ey >0, ¥ E€E, e (lelg- D <ow () Se (lelg+ D (3.2)

The constitutive law (3.1} now reads

e{u(x)) € B

a(x) €dow (elulx)) | a.e.x in 0

- .
W and W denote the strain energy and the complementary energy of the

body respectively defined on LZ(Q,E) and LI(Q,E) as

W*<c)

[ v (o(x))dx
2

W{e)

f pw(e(x))dx
Q

In addition to the constitutive law, the stress and strain must sa-

tisfy the following requirements :

do, .
—L +pf, =0 in 2 equilibrium equations
ax 1

]
Uij “j = Fg on BQF
u;, = Ug on aﬂU
4 few assumptions on the loadings(T) enable us to define the spaces
M oreit@?, Peien®, vlen! 2oy’
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of kinematically admissible fields of statically admissible fields, and

.the work of given external forces as :

1 d
Us=Tu€B (Q),u=1 on 3,
B ={uem@,c(x) EB a.e.x€ Q)
2 . . d -
Sad = {oc € L(R,E) ,divo+pf =0 in @, g.n = F° on BQF}
d 1

L{w) = [ pfu dx + J Fluds YuE M () .

1) a8l

F
3.1. Variﬁtional properties of the stress and displacement fields.

Provided that they have a minifum regularity, the solutions (g,u)

of the above problem satisfy the following variational principles

2

(PRAGER % , DUVAUT-LTONS '%) in terms of the strain enengy :

Inf [W{e(w)) = L{w 1 , (3.3

<
u uad

in terms of the complementaty eneagy :

sup [~ W)+ [  o.n 0 ds] (3.4)

o€ Sad anu

Problem (3.3) admits a sofution, provided that the following condition -

g is satisfied :

BOU,, #9 (3.5)
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Indeed, W turns out to be a strictly convex lower semi céntinucus

and coercive functiomal :

W) 22 fe(w |2

Korn's inequality proves the coercivity on the non empty closed comvex
subset BN Uad of Hil(ﬂ) of the functional involved in (STB) . Then,
exlstence and uniqueness of a solution for the variational problem (3.3)
is easily derived.

The variational problem (3.4) for the stress field ¢ is .a more
difficult one. Indeed, as a consequence of (3.2) , the functiomal W*
is only coercive on Ll(Q,E) which is a non reflexive space. Therefore,
proving the existence of a solution of (3.4) by means of classical ar-
guments of coercivity, requires the introduction of a new functional rspace,

accounting for 4{ress concentrations

(D = (g€ M](R,E), diva.ELz(Q,RN)} (Ml = bounded measures)

A detailed study of E{Q) can be found in 15 » and the preoof of the
existence of a solution ¢ in IZ(H) is completed in 18 | In order that
the solutions u and o of (3.3) and (3.4) satisf§ the extremality

relations, i.e. the constitutive law (3.1) it is necessary to. that

Inf(3.3) = Sup (3.4) (3.8)

The proof of (3.6) can be found in DEMENGEL-SUQUET ° .
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3.2. Locking limit analysis.

In the previous works concerned with locking materials the assumption
BN uad ¥ . (3.7)

was not discussed. By analogy to the plastic limit analysis we call such
a discussion the Locking Limit analysis : it determines for which set of
imposed displacements Ud y the condition (3.7) is fullfilled.

For sake of simplicity, U?

is assumed to be propertional to a load

parameter

LI

Ud = Au
o
The space of kinematically admissible fields now depende on the load

parameter
1
Uyg) = {flue B (@, u= Au om0}

The locking limit analysis amounts to determine the admissible values

of X . Let us define

Ay =Sup{AER| BOU (N # ¢}

Probfem q B (3.8)
Since a sup is computed in (3.B) KE is approximated by £Lower values.
An approximation by upper vafues can be preposed which consists of the

dual problem of (3.8)
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. l,m= N
* . ’ =

Inf [ mgloddx Problem (3.9) uy € W (aw) and u = x u

= ‘So o
_ where X, denotes the characteristic function of iy, -

f "gmu ds =1

L ° H3  There exists o° € So such that

where ) f' o®.n u, ds ¥ 0.
' Bﬂu

Sc = {g € LZ(Q,E), diveg=0 a.e. inQ , oc.n =0 on BQF}

. _ Proof. The proof requires several steps. We shall complete the first one ;
"B(c) = e i?%} (0ye) the other ones are treated in full details in

' We set
We shall prove the following theorem :

v-u'@, v=1%aE - .

. A*-’\ fab] Ya
THEOREM &, Unden the assumpiions HI1,H2 Listed hereagter : G (3.5) 44 '
the dual problem o4 Q (3.8) and the primal dual refations hobd : ‘ We define a linear operator A € L(V,Y) by

‘ : *
Sup Q = Inf Q Av=ely)

14 moreover H3 s satisfied :
: We define on V and Y two functionals F and @ by :

- * :
= = w 3.10 - i = &
X Inf Q Sup Q < + { ) | AOif ou ’“_’o on B, (u U 4(2)
F(v) =
Tz 46 the Leching Limit foad | +  otherwise
Remark. It is worth noting the analogy with the plastic limit analysis. G(p) = Iy (p) where Ip denotes the indicator function of B ..
Problem (3.8) 1is a kinematical approach of 3# while (3.9) is a sta- Problem (3.8) now reads :

tical approach of IE .

‘ . Inf {F(v) + G(Av)}
Hl 2 is a bounded domain with a Lipschitz boundary. B 1is a bounded, i v EY

H

closed convex set of E containing { as an interier point, ] and its dual problem is s

d

2 L ereii@®, e o’ | i
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* % * koK ’
. Sup -G (p)-F (Ap)}
* ok
P EY
A theorem of KRASNOSELSKII ensures that :
* * U
G (p)=[ mn(p)ax.
19}
. * ok ow S . .
The computation of F (A p ) is performed im the following proposi-

tiom.

Proposition.

0 A4 p* €8 and | p*.n u ds = I
=} a0, o

*, % %
Flap) =

+o  otheuise,

Proof.
* ok ok ) . * . . IR .
F{(Ap)= ‘Sup [ (A p*,u) + 3] : ‘ (3.113
u € Uad(h)

‘

: . 1,
From assumption H2 we deduce that there exists Ua IS

(ﬂ)N such

that
U =u on 30 . i.e. AUO 1S Uad(k)
Then :

* ok ok
F(Ap)» Sup 2[5, 0) + 1]
AER o

This supremum equals += except when
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(A*p*,uo>.+1=o‘ . ' o (3.12)

. h I g . . . . s .
We perform the computation of F (A p } in this specific situation. Using

* * ' :
the fact that ! =- (A p , UO) we get from (3.12)
* * *
Pt = sw 1Y, u-an))
u € Uad(ly
= sw (WYL W
vEY

= 0
v an anU

17

The computation of this last supremum is classical (TEMAM } .
e, .
*, %k * * . .
F (Ap) =+= except for the p satisfying :
. * . *
divp =0 in 4G, p .n=0 on BQF . {3.13)

With the help of Green's formula the condition "(3.12) 1is equivalent
to '

*
f pemu ds + 1 =20

BQU

Finally we have shown that a necessary condition to be satisfied by

* : . * ok
p in order to give a finite value to F (A p ) is

- ; * ! T . : L
p €8 s [ p.nu ds+1=0 (3.14)
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Under these conditions it can be proved from (3,11)(+) "that
Tk ke k * L,
F(hp) =0 for p- satisfying (3.14)

which completes the proof of the prOposition.
. - 4 .
1t enables us to perform the computation of @ which amounts to :
: *
- LSup ‘ - j nB(—p ydx ]
p €3 Q
0

K
] pm ay as+1 =0

BRU

or equivalently

Inf [I HB(U)dX]
Q

which is exactly (3.9} . The primal-dual relations yield :
*
Sup Q < Inf Q

The proof of the reverse inequality is a technical one. It is due to
F. DEMENGEL and uses a penalty method. It cam be found in DEHENCEL-
SUQUET 4 .

Let us emphasize once moreé that the stress problem (3.9) is nol

et b

+ . . . . . ' . :
™ The complete justification of this point follows the appendix of

gection 2 in TEMAM 17

' Locking Materials and Hysteresis Phenomena 3a7

coercive in. the classical space LZ(Q,E) but only in _L](B,E) . 'There-
; : 1 .
fore we expect to find a stress field o in M (R,E) . The following

example illustrates this point.

3.3. An example of locking 1imit analysis : torsiom of cylindrical bars.
Let us consider a cylindrical bar, with a simply connected cross-

gection, made from a locking material, and gubmitted to a torsien experi-

ment, with angle A - The stress tensor and the displacement field exhi-

bit the following classical form :

0 0 %13 . . u, = -?\xzx._,’
o = Q- 0 d93 R u = u, = X xl'x3
93 U9q 0 ug = u3(xl,xz,k)

e
]
1
¥

T Gl

h_.x3 =0
. B
-
X, Xy
cylindrical bar Q aquare;cross-section I

~ Figure 6 -
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Equilibrium equations reduce to

do 30
13 + 23

=0
Bxl sz

The boundary conditions amount to

O35 Py " 0 on lateral sides of the cylinder (3.15)
u, == A Xy
u, = A % on the upper section of the cylinder, Xy = 1
Uyq = 0
u = u, = 0

on the lower section of the cylinder, Xy = Q.
Ogq = 0

A classical analysis of the equilibrium equations shows the existence
of a Atness furction € such that

EL

a8 -
Gyq = 3;; (xl, xz) R 931 BX] (xl, x?) (3.18)

3
Thg tangential derivative of & along the boundary-of the cross

section"E amounts to :
E R - Y - . G
1 13 My 0,3 Ny OR . ( 17

According te (3.15) the boundary &I , is free of stress.
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Therefore, recalling that the cross section is simply connected, we get
§ = constant on 3I

9 being defined up to an additive constant, we can chocse the constant
. . 2
on 3¢ tobe O . Therefore if ¢ is im 17(R,E) , 6 belongs to
1
H (%)
B is the ball of center 0 and radius ko. The locking limit

analysis problem can be explicitely solved :

ﬂB(c)dx = ﬂg'ko |ot dx"= £: ko |ve] dxldx2 ,

/
o
/
3

o.nu ds = f o+ [ =%y 013+ x cza)ds
a X,=0 x,=h '
3 3
ERTIPE TR 8 .
= é (sz X, + 3, X )dx, dx, & b dx, dx, .

The locking limit aﬁalysis problem amounts to

T =  Min [« |ve| ax (3.18)
% 1 5 0
9 € Ho(z)
[ e dx=1
z

This minimization:pf;bl;m:hﬁs been a&regﬁy eﬁcountered By SfRANG 18
in thé determinafioﬂ of'tﬂe limit load of ﬁ vertical column submitted to
Eddy forces {(anti-shear pfoblém). The following cbnclusicnslof:STRANG
are especially meéniﬁgful in.the-;xample hgre'éon;idered :

a) The préblem (j.fé) does nof admif'a soiution 6 in .H;(ﬁ)',
nor in Wé’l(E) . The proper space.to work witﬁ; is BV(L) ; the

.
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stress tensor o is therefore in MI(E) by virtue of (3.16) . In

BV(Z) the solutions B of (3.18) are characteristic functions of seils
with rather smooth bounderies. According to (3.16) , the stress tensor
is a Dirac distribution on the boundaries of these sets : these lines will
be called Locking Lines.

b) locking lines necessarily intersect the boundary 3L of the
crosa—section; Therefore the stress function © is no more constant.on
37 since it jumps from O to | . As a consequence its tangential de-
rivative given by (3.17) contains Dirac distributions on B3I , and
in particular does mot vanish in D'(Z) . The condition of {ree edge
(3.15) 44 not satisgdied in a distributional sense. In a more general
context the boundary conditions of imposed forces h;ve to be relaxed
(cf. 16)

¢} in case of a square cross section, STRANG found out the explicit
solution of (3.18) . Locking line; are plotted on figure 6 ; Jumps
of & on 3L are noticeable. The curved parts of locking lines are

circle portions.

3.4, Possible extensions.

A theory of locking of sfruciures can be proposed. Strains are taken
in a generalized sense : rotations, deflections, angles... In the example
of a robot, the limit strain e, can madal thé free motion of the joints.
The problem is to determine which joiﬁts will be locked under a specified
loading and which imposed displacements are admissiblé. We expect the
stresses to concentrate on the locked jeints which therefore require an

adequate reinforcement,
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4. CONCLUSIONS

A possible modelling of hysteresis phenomena, accounting for locking
effects has been proposed. The case of ideal locking materials has been
considered and a special emphasis has been set on the locking limit ana-

lysis.

L
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