E SANCHEZ-PALENCIA & P SUQUET
Friction and homogenization of a boundary

1°  INTRODUCTION

The eguilibrium probleﬁ for an elastic body on a rigid support with dry
friction (Coulomb's law) seems to be an open free boundary problem. The
main difficulty is the lack of a variational principle associated to the
problem and the consequent failure of the convex analysis technique. In
fact,.with standard notations (which will be given in the sequel) the

formal variational formulation of the problem is (cf. [1] or [2] sect. 5.4.4)

u € K

f 3, jkh et eij(v - u} dx + fP kloN!(lvT|-—|uTl) ds =
§ 2
(1.1}
> f f(v - u) dx Vv ¢ K
Q ‘

K = {v [ Vi <0 on FZ}

The term containing IONI is not defined for ¢ ., n ¢ H-l/z(l“z)3 and is not
the subgradient of a functional. Several mathematical attempts have been
made in order to overcome this difficulty: non local friction [1], fixed
point techniques (gquasi-variational inequalities [31[4]) . The former
introduces a modification of the law while the latter involves a relation
between the friction cocefficient and the elasticity coefficients.

In fact, friction seems to be a surface phenomenon associated with rough-
ness. In the present work we apply the homogenization of boundaries to the
classical (without friction) Signorini's problem on a boundary having small
‘undulations. A small parameter ¢ is associated with the size of the
cerrugations. In fact the limit problem (homogenized) is not a dry friction
problem. It is a new well posed (variational) problem for which the stress
vector on the boundary is contained in the conjugate cone (instead of a
halfspace). This law was already proposed in [5].

In fact our result is not very surprising for two reasons. First the

hypothesis of small displacements is not probably fitted for the physical

Problem. Second the Signorini's problem is of standard type (minimization
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of some energy) and this property is preserved by homogenization of the
poundary. As a result, our study is an example of homogenization of a
boundary, but it does not furnish a justification of the Coulomb's dry

" friction law. This justification has to be done.

(=]

2 SETTING OF THE PROBLEM

The classical Signorini's problem (without friction) is the following {see
for instance (2)). Let {2 be a bounded connected problem in:R3 with smooth
poundary o1 formed by three disjoint surfaces FO,Fl,Tz. The solid body

fills §2, is clamped on FO and free on Fl. The surface F2 is such that the

body may either lie or part on a rigid support.

30, .

l? + £, =0 in R

9% i

(2.1)
u, = 0 or FO’ Gijnj = 0 on Fl
< < = =
uN < 0, O'N < 0, O'T O, uNON O on T2 (2.2)
Buh P

Gij = aijkh € b (u), @) hx () = 1/2 (§§Z-+ quj

Classical notations are used: in particular aijkh are the elastic coeffic-
jents. We consider them to be constant and satisfying the standard

conditions of symmetry and ellipticity.
The variational formulation of (2.1)-(2.3) is as follows. We define the

Hilbert space I, the closed convex set K and the bilinear and linear forms

a and L by

L V= {v‘v = (v.}, V. € Hl(ﬂ), v. =0onl_1i=1, 2, 3}
1 1 1
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K = {V‘V e V., v. £0 on Tz}

N

a(u,v) (u) e (v} dx

N fﬂ ?1jkh ®khx ijx
L(v) = J fvdx
Q

Then the problem amounts to:

find u € K such that:

(2.4)
afu, v=u) 2L (v - u} ¥Yv € K

This problem has a unigue solution, it is equivalent to the minimization

problem:

ft

Min d¢(v) 1/2 a(v,v) - L(v)
veEK ’ a

We now consider a spec%al case of this situation for domains ) = QE depending
a parameter € > O as follows. We consider the plane (Oylyz) shared into
periods Y = ]O'Yl[ b ]O’YZ[' We give a positive Y-periodic function

w
F (yly2) of class C taking value zero in a neighbourhood of the boundary

of the period. We then consider the surface ¥ defined by:
y3 = = F(Yl:Y2)

and let ZE be its homothetic with ratio .

1,
X, =~-¢ F (===
3 € (E €)
We consider an open connected domain Ql having a non empty intersection

with the plane Xy = 0. The domain QE and the limit domain QO are defined by

X X
= -
2.=0, {x]x3 er(T1,72)} % x,
E E
= >
QO Ql " {u|x3 0} 115
The undulated boundary is:
0 *17%
£
Fz - Q1 n Ee ;11

563



The corresponding Signorini's problem amounts to search for u® e V£ satisfying

the analogous of (2.4) with:

VE:

]

{vlv = (v)), v, € g%, v, =oon T }
i i i O

€
K

Il

{vlv e VE, v.n <0 on T;}

[+]

3 ASYMPTOTIC EXPANSION AND CONSEQUENCES

Following the classical process of boundary homogenization ([6] sect. 5.7

we define the domain B.
= i = -
B {y\yi € ]O,Yi[, i 1,2, ¥4 F(Yl'y2)}
Then we expand the stress and displacement fields:

GE(x)

o 1 ' i
o (x,y) + €0 (x%,vy) +....+€lci(x,y)+.%.. vy = (3.1)

mix

Il

uE(x) uo(x) + eul(x,y) +....F Elui(x,y)+.... ¥y = %: (3.2)

i i 1
with Gl, w  B-periodic. Moreover u must satisfy the boundary layer

condition:
, 1l . 1
lim grad Yu =0 < lim ey{u ] =0 (3.3
o yrto

The expansions of (2.1}, (2.3} give at order e_l and eo:

\

Bdi, . .
5 l -0 inB | \
) . (3.4)
a = a (uo) + e (ul) in B
i3 = *i3kh |Tkbx khy i
90 . _
ij ~ X 0 :
—J + £ =0ind (3.5)

in order to expand the poundary condition (2.2) we define twoO conjugate

3
convex cones of R :
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I'= {BfB.n(y) <0 Vy ¢ %)

| r* = {t] (t,fs0 V¥R eT}

! (2.2) at order £° gives

u. ¢ I. (3.6)

~The tangential components of O.n are zero and

t
&)

: O
! u (xInly) <0 = Gij(x,y)ni(y)nj(y} (3.7)

A
Q

i 8]

| . = T

u (x)n(y) 0 Uij(x,y)ni(y)nj (v) {3.8)
| 1 .. o . . o

[ At order , 1f u € Intl (interior of Y we are in the situation (3.7)

I and {2.2) gives no new condition on ul.- On the other hand, if up € bl

(boundary of I} there is a subset of Z, denoted ¥' where {(3.8) holds and we

have:

ul(x,y)n(y) <0 Yy ¢ ¢ {(3.9)

For sake of simplicity we admit that I' is either I (if uo = 0) or a set with
 2Zero measure. This happens in particular if € does not contain any plane
i{ portion (apaxrt from Yy = 9). _ |

~ Thus, the so called local problem in B (cf. [6]) (x is a parameter)
" amounts to find a B-periodic function ul(yh‘satisfying (3.3)(3.4)(3.6) (3.7)
©(3.8) (3.9) wheré w2 is given (in fact u’ e:R3 and eij.(uo) EZR6 are given).

We shall see later that the local problem has a solution if u satisfies some

-compatibility conditions. These conditions (see later) constitute boundary
el R o . .
.. conditions to be satisfied by u (x) on {x3 = 0} in order to define a boundary

“’value problem for uo in QO._ This limit problem will be explicitly given in

|
r
|
i

In order to obtain the compatibility conditions we multiply (3.4) by any

9, 4 o
° = JB dy.. Bt dy = [BB o ijnjBids
J (3.10)

0 1
+
3 jkh Sknx (2 By [35 n,ds faB 3jjkh Skny (W )n4B;ds
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‘standard properties of convex analysis show that this is equivalént to

But J n,ds = 0 and J nds =- 6. Y.Y
B ] ¥ J j 172
bearing in mind the periodicity of ul, {3.10) gives:

®] O
{u )I X, =0 Bi = JZ GN BNds {3.11)

%3 3kh “xhx 3

and by means of the notation:

O O
o]

130 T %39kn enx{®)

(3.11) becomes, by virtue of (3.6)(3.7)(3.8)

@) O O
UiB(u )Bi 20 v e T 013(u ) u, =0on Xy = 0 (3.12)

either (3.13) ox {3.14) whexe IT denotes the indiéative function of T and

31. its subdifferential ({see 7 :

T

0

u eT : (3.13)
o) 0 :

- glu).n € BIT(u ) on X, = 9]
o

- . =0 T*

Glu?).n %5 € (3.14)
o) 0
u € BIP*(— gla ) .n) on x, = 0

4° INDICATIONS ABOUT EXISTENCE AND UNIQUESNESS OF THE LOCAL PROBLEM

@] i
We sum up the local problem. Let u eIR3, eijx(uo) € Rﬁ be given, satisfying .3

the compatibility conditions ((3.12),(3.13) or (3.14)): find a B-periodic

1
vector u  satisfying:

o
ile] .
ij o 0 1 .
= — +
OYj o, Uij 3, 4k [ekhx (u’) eijy(u )] in B W
lim e (ul) = O, tangential compconents of ¢g,.n, EZero on v (4.])
N T i3]
Y, 1

1
< < ! = 1 - 1
unly) £ 0 and Oijnjni <0 Vyeli', Gijnjni O ¥Yye i —-Z' |

566




In order to give a variational formulation of this problem, we define a
space and a convex set K as follows. Let BR'be the domain defined by:
Bﬁ = {y ¢ B, Y, < R}. Let E,be the set of the B-periodic vector functions
of class C which are constant for sufficiently large Yy Then ¥ is the

completed space of & for the norm associated with the scalar preduct:

(u,v} = J e,.. f(u e,. (v) dx + J v, dy
g 13V ijy g 11 :
' R (4.2)

K=1{vlvev v.n|g, <o}
The problem {4.1) is then equivalent to the following variational problem:

Find ul € K such that v ¢ K (4.3)

1 1 0
(0" e, (v-uh)ay + J 3, ixh k(B ) |

1
a, ., e . . n,(v,-u}ds 20
J; ijkh “khy ij 7 x3=0 004 74

or equivalently the minimization on K of the functicnal:

(uQ}n.v.ds (4.4)
J i

x3=0

¢lv) = 1/2 J; ®i3kn Ckny (V) €y, (VY + [Z %iikh ®khx

: : 0 L
It is to be noticed that in the case u- ¢ nl, uO # O, which is a very
special case, L' is a part of I with zero measure. Thus it is not obvious

that K is closed for the strong topology.of ¥ (and it is probably not: think
2
to the dense embedding of I-Il'/2 into Hl/

ations hypothesis is probably violated and the problem should be formulated

[8])) . Physically the small deform-

in another framework. This point deserves a deeper study.

Case uo = 0: 1In this case L' = L. We admit that the compatibility

condition satisfied in such a way that:

o, (uo) € Int T on x_ =0 (4.5)
i3 3

, 1 .
Then a solution u exists because:

im  ®(v) = 4w (4.6)
v > 400
ve K

567



1 . .
Case uo € Intrx u = 0 is a soluticon of the preblem.

o

0 . e .
Case uO e b, u # 07 We admit that the compatibility condition 1s satis-

fied in such a way that:

a. = 0

O
i3 (u )I

x3=0 Yi

Y n, (y}) <0 Yyelk

; In this casé we define a space V as the guotient space of V by the straight
| line {luo, % ¢ R}. We note that &(v) take the same for all the elements of
!I an equivalence class and consequently is a functional é on b: The same thing
h holds for K from which we get a convex set K of ﬁ. The existence of a

solution then follows from a property analogous to {4.6) in %, K.

I £° HOMOGENIZED BOUNDARY CONDITION AND COMPLEMENTS

5.1. The limit problem

According to the considerations of Section 3, the homogenized problem for

_ Bcij(u ) o

¥ o HE =0, 005 = By M) P S (5.1)
1

fﬂ uo =0oon T o] (uo)n = Q on f' : (5.2)

i o' “ij 3 1 ' i

{& W e, -0 (uo)-n € BIF(uO) on Bsb n{x3 = 0} . : (5.3)

This problem has cne and only one solution. Indeed, if KO is defined by

(5.4) the problem (5.1)-(5.3) is equivalent to (5.5) .

3 -
WO = vy e @, ul el u=0o0nTF] (5.4)

0 O O
Find u- ¢ K~ such that Vv ¢ K

(uo) e, . (V-uO)dx > f £, CV.—u?)dx
ijx i i i

a e
ijkh hx
Jn Lixn Q
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5.2. On the structure of the friction laws 8]/ [10]:

The main difficulty of the Coulomb's law is that it is a non standard one
{(this will be precised later on) and therefore cannot be handled by class-
ical reasonings of Convex Analysis,

We note that for an elastlc body the displacement field on T is a
gZobal state variable. Indeed if this displacement field, now denoted o,
is known the displacement in the whole body is given by the variatiocnal

principle:

W(Q} = Min W(u) = l/zjgaijkh ekhx(u) eijx(u)du - fﬂfudx (5.6)
u =0 on F2
u=0 on FO

The thermodynamical force A associated with o is:

oW

A= - o Jd.n on F2 .

The two laws of thermodynamics show that the dissipated power is:

D = frz At = —fr2 O.n uds 20 . (5.7

We shall say that the dissipative process is standard if there exists a

convex, l.s.c. function © such that:

L] B(D

o = BA{A) @{A) 2 (0} = O (5.8)

The friction law (5.8) is an evolution law which accounts for time effects.

Dry (or static) friction laws are built on the same model;

_ 30
a = aA(A) {5.9)

Examples

1. Viscous friction N

®©(A) = 1/2 lelz u. =-ko_, q. = 0 (evolution)
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or uT = - kUT, uN = Q0 (dry) ..
2. R = IT* (a) where I'* = {ala_ 20, [|a | <x[a [}
AT ?
1
]
' l
L )
| n
il ' A
Standard
5. L
i
¥ coulomb
The dry friction law (5.9} is: - O.n € T'*, u EBIF(—O,H) on F2 which is

exactly the law (5.3) in its form (3.14).

As it can be seen on the figure the Coulomb's law is not standard.

o

(5] CONCLUSTONS

The present work illustrates the technigue of boundary homogenization. It
proposes a law of friction where sliding is allowed only-after separation.
This law is a standard cone and differs from the Coulomb's law. Coulomb's

law is still to be justified by more accurate models.
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