Sound quality assessment of wood for xylophone bars

Mitsuko Aramakia)
CNRS Laboratoire de Mécanique et d’Acoustique 31, chemin Joseph Aiguier 13402 Marseille Cedex 20, France

Henri Baillères and Loïc Brancheriau
CIRAD-Forêt, TA 10/16, avenue Agropolis, 34398 Montpellier Cedex 5, France

Richard Kronland-Martinet and Sølvi Ystad
CNRS, Laboratoire de Mécanique et d’Acoustique 31, chemin Joseph Aiguier 13402 Marseille Cedex 20, France

(Received 15 March 2006; revised 22 January 2007; accepted 22 January 2007)

Xylophone sounds produced by striking wooden bars with a mallet are strongly influenced by the mechanical properties of the wood species chosen by the xylophone maker. In this paper, we address the relationship between the sound quality based on the timbre attribute of impacted wooden bars and the physical parameters characterizing wood species. For this, a methodology is proposed that associates an analysis-synthesis process and a perceptual classification test. Sounds generated by impacting 59 wooden bars of different species but with the same geometry were recorded and classified by a renowned instrument maker. The sounds were further digitally processed and adjusted to the same pitch before being once again classified. The processing is based on a physical model ensuring the main characteristics of the wood are preserved during the sound transformation. Statistical analysis of both classifications showed the influence of the pitch in the xylophone maker judgement and pointed out the importance of two timbre descriptors: the frequency-dependent damping and the spectral bandwidth. These descriptors are linked with physical and anatomical characteristics of wood species, providing new clues in the choice of attractive wood species from a musical point of view. © 2007 Acoustical Society of America. [DOI: 10.1121/1.2697154]

PACS number(s): 43.75.Kk, 43.66.Jh, 43.60.Uv [NFH]
Pages: 2407–2420

I. INTRODUCTION

The mechanical and anatomical properties of woods are of importance for the sound quality of musical instruments. Yet, depending on the role of the wooden elements, these properties may differ. Xylophone sounds are produced by striking wooden bars with a mallet, and thus the mechanical properties of the wood are important. This study is the first step towards understanding what makes the sound of an impacted wooden bar attractive for xylophone makers from a musical point of view. For this purpose, we recorded sounds from a wide variety of wood species to compare their sound quality and relate it to the wood properties. An original methodology is proposed that associates analysis-synthesis processes and perceptual classification analysis. Perceptual classification was performed by a renowned instrument maker.

The xylophone maker community agrees on the choice of wood species. This choice is driven by the sound quality, but other nonacoustically relevant properties are considered as well (e.g., robustness; esthetic aspects). The wood species most used in xylophone manufacturing is *Dalbergia* sp. Several authors have sought to determine which physical characteristics are of importance for the generated sound. In particular, Holz (1996) concluded that an “ideal” xylophone wood bar is characterized by a specific value range of density, Young modulus, and damping factors. Ono and Norimoto (1983) demonstrated that samples of spruce wood (*Picea excelsa, P. glehnii, P. sitchensis*)—considered a suitable material for soundboards—all had a high sound velocity and low longitudinal damping coefficient as compared to other softwoods. The cell-wall structure may account for this phenomenon. Internal friction and the longitudinal modulus of elasticity are markedly affected by the microfibril angle in the S2 trachcheid cell layer, but this general trend does not apply to all species. For instance, pernambuco (*Guilandina echinata* Spreng., traditionally used for making violin bows, has an exceptionally low damping coefficient relative to other hardwoods and softwoods with the same specific modulus (Bucur, 1995; Matsunaga et al., 1996; Sugiyama et al., 1994). This feature has been explained by the abundance of extractives in this species (Matsunaga and Minato, 1998). Obataya et al. (1999) confirmed the importance of extractives for the rigidity and damping qualities of reed materials. Matsunaga et al. (1999) reduced the damping coefficient of spruce wood by impregnating samples with extractives of pernambuco (*Guilandina echinata* Spreng.). The high sound quality conditions are met by the wood species commonly used by xylophone makers (like *Dalbergia* sp.), but other tropical woods may serve. We propose to focus on the perceptual properties of impacted wood bars as the basis for pointing out woods suitable for xylophone manufacturing. Several studies using natural or synthetic sounds have been conducted to point out auditory clues associated with geom-

a)Author to whom correspondence should be addressed. Electronic mail: aramaki@lma.cnrs-mrs.fr
etry and material properties of vibrating objects (Avanzini and Rocchesso, 2001; Giordano and McAdams, 2006; Lutfi and Oh, 1997; Klatzky et al., 2000; McAdams et al., 2004). These studies revealed the existence of perceptual clues allowing the source of the impact sound to be identified merely by listening. In particular, the perception of material correlated mainly with the internal friction (related to the damping factors of the spectral components) as theoretically shown by Wildes and Richards (1988). Nevertheless, it has not been determined whether the perceptual clues highlighted in the distinction of different materials are those used to establish the subjective classification of different species of wood.

The perceptual differences reported in the literature are linked with subtle changes in timbre, defined as “the perceptual attribute that distinguishes two tones of equal, pitch, loudness, and duration” (ANSI, 1973). This definition points out the importance of comparing sounds with similar loudness, duration, and pitch. Concerning loudness and duration, the sounds of interest can easily be adjusted in intensity by listening, and they have about the same duration since they correspond to the very narrow category of impacted wooden bars. Concerning pitch, the bars do not have the same values because the pitch depends on the physical characteristics of the wood, i.e., essentially of the Young modulus and the mass density. To tune the sounds to the same pitch, we propose to digitally process the sounds recorded on bars of equal length. Synthesis models can be used for this purpose, allowing virtual tuning by altering the synthesis parameters. Such an approach combining sound synthesis and perceptual analysis has already been proposed. Most of the proposed models are based on the physics of vibrating structures, leading to a modal approach of the synthesis process (Adrien, 1991; Avanzini and Rocchesso, 2001) or to a numerical method of computation (Bork, 1995; Chaigne and Doutaut, 1997; Doutaut et al., 1998). Yet, although these models lead to realistic sounds, they do not easily allow for an analysis-synthesis process implicating the generation of a synthetic sound perceptually similar to an original one. To overcome this drawback, we propose an additive synthesis model based on the physics of vibrating bars, the parameters of which can be estimated from the analysis of natural sounds.

The paper is organized as follows: in Sec. II, we discuss the design of an experimental sound data bank obtained by striking 59 wooden bars made of different woods carefully selected and stabilized in a climatic chamber. In Sec. III, we then address the issue of digitally tuning the sounds without changing the intrinsic characteristics of the wood species. This sound manipulation provided a tuned sound data bank in which each sound was associated with a set of descriptors estimated from both physical experiments and signal analysis. The experimental protocol is described in Sec. IV. It consists of the classification carried by a professional instrument maker. The classification was performed with both the original and the tuned data banks to better understand the influence of pitch on the classification. These results are discussed in Sec. VII, leading to preliminary conclusions that agree with most of the knowledge and usage in both wood mechanics, xylophone manufacturing, and sound perception.

II. DESIGN OF AN EXPERIMENTAL SOUND DATA BANK

a. Choice of wood species. Most percussive instruments based on wooden bars are made of specific species (for example, *Dalbergia* sp. or *Pterocarpus* sp.). In this experiment, we used tropical and subtropical species, most of which were unknown to instrument makers. A set of 59 species presenting a large variety of densities (from 206 to 1277 kg/m3) were chosen from the huge collection (about 8000) of the CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France). Their anatomical and physical characteristics have been intensely studied and are well described. The name and density of each species are in Table III.

b. Manufacturing wooden bars. Both geometry and boundary conditions govern the vibration of bars. By considering bars with the same geometry and boundary conditions, sounds can be compared to determine the intrinsic quality of the species. Hence, a set of bars was made according to the instrument maker recommendations. The bars were manufactured to be as prismatic as possible, with dimensions $L = 350$ mm, $W = 45$ mm, $T = 20$ mm, without singularities and cut in the grain direction. We assume that the growth rings are parallel to the tangential wood direction and that their curvature is negligible. The longitudinal direction is collinear to the longitudinal axis of the bars. The bars were stabilized in controlled conditions.

c. Recording of impact sounds under anechoic conditions. An experimental setup was designed that combines an easy way to generate sounds with a relative precision ensuring the repeatability of the measurements, as shown in Fig. 1. In this way, impact excitation was similar for all the impacted bars. Moreover, to minimize the sound perturbations due to the environment, the measurements took place in an anechoic room.

The bar was placed on two rubber bands, ensuring free-free-type boundary conditions. The rubbers minimized perturbations due to suspension (see, for example, Blay et al., 1971 for more details). Bars were struck with a small steel pendulum. The ball on the string was released from a constrained initial position (guide), and after the string wrapped around a fixed rod, the ball struck the bar from underneath. The robustness of this simple procedure showed the radiated
sounds were reproducible: the determination error was less than 0.1% for the fundamental frequency and 4.3% for the damping coefficient of the first mode (Brancheriau et al., 2006a). To ensure broad spectral excitation, the ball was chosen to generate a sufficiently short pendulum/bar contact (to be as close as possible to an ideal Dirac source). The excitation spectrum is given by the Fourier transform of the impact force, so that the shorter the impact, the broader the spectrum excitation. For that, a steel ball was used since the modulus of elasticity of steel is much larger than that of wood (the ratio is about 200). This setup makes contact duration between the ball and the bar short (Graff, 1975). This duration was shortened because the impact point was underneath the bar, maximizing the reversion force. After several experiments, a good compromise between speed, short duration, and lack of deformation of the material was obtained with a steel ball of 12 g and a 14 mm diameter, tightened by a 30-cm-long string. The impact point played an important role in the generation of sounds. To prevent the first modes from vanishing, the bar was struck close to one of its extremities (at 1 cm), allowing high frequency modes to develop. An omni-directional microphone (Neumann KM183mt) was placed in the close sound field at the opposite end of the impact location to measure the sound-radiated pressure. This configuration obviates the contribution of the spectral peak generated by the ball, peak which was at about 10 kHz. The sounds were digitally recorded at 48 kHz sampling frequency.

\(d. \) Signal characteristics. Figure 2 shows the temporal signal, the spectral representation, and the time-frequency representation of a typical sound obtained experimentally. The temporal signals are characterized by a short onset and a fast decay. Consequently, their durations generally do not exceed 1 s. Their spectra are composed of emergent resonances that do not overlap much. As shown by the time-frequency representation, the damping of these spectral components is frequency dependent, the high frequency components being more heavily damped than the low frequency ones.

III. DESIGN OF TUNED SOUND DATA BANK FOR TIMBRE STUDY

To facilitate comparison of the timbre of sounds generated striking different wood species, their pitch was equalized. In practice, this could have been possible using the same procedure adopted by percussive instrument makers, where the bar geometry is modified removing some substance around the center of the bar to be tuned (Fletcher and Rossing, 1998). This approach comes, however, with the risk of making irreversible mistakes, for example, removing an excessive amount of wood. As an alternative, we propose to digitally tune the pitch of sounds generated striking bars of equal length. Such an approach relies on the plausible assumption that the pitch of our recorded signals is primarily determined by the frequency of the first vibrational mode. In particular, we use a sound synthesis model which allows for sound transformations that are accurate relative to the physical phenomena, as compared to other signal processing approaches such as pitch shifting.

\(\text{FIG. 2. (a) Wave form, (b) spectral representation, and (c) spectrogram (amplitude in logarithmic scale) of a typical sound obtained by impacting a wooden bar.}\)

A. Synthesis model based on physical approach

To tune the sounds, we propose to use an additive synthesis model. This model simulates the main characteristics of the vibrations produced by an impacted bar to exhibit the principal properties of the radiated sound.

1. **Simplified mechanical model**

Numerous mechanical models of bar vibrations are available in the literature, but the relevant information can be
pointed out using a simple model based on assumptions that are coherent with our experimental design. According to the manufacturing of the bars, one can assume that the fiber orientation follows the axis of the bar and that the ratio length/width is large. Consequently, one can neglect the anisotropy property of the wood and the contribution of the longitudinal and torsional modes (which are few, weak, and of little influence on the radiated sound). These assumptions allow for the consideration of a one-dimensional mechanical model depending only on the longitudinal Young modulus. Such a model can be described by the well-known Euler-Bernoulli equation

$$EI\frac{d^4y(x,t)}{dx^4} + \rho S \frac{d^2y(x,t)}{dt^2} = 0,$$

(1)

where E is the longitudinal Young modulus, I the quadratic moment, ρ the mass density, and S the cross section area. The general solution of the equation is given by

$$y(x,t) = \sum_{n} Y_n(x)e^{\gamma_n t},$$

(2)

with

$$Y_n(x) = A \cos(k_n x) + B \sin(k_n x) + C \cos(k_n x) + D \sin(k_n x).$$

(3)

By injecting Eq. (2) and Eq. (3) into the Eq. (1), one obtains

$$\gamma_n = \pm \sqrt{\frac{EI}{\rho S} k_n^2}. $$

(4)

Our experimental setup corresponds to free-free boundary conditions written

$$\frac{d^2Y(0)}{dx^2} = \frac{d^2Y(L)}{dx^2} = \frac{d^2Y(0)}{dx^3} = \frac{d^2Y(L)}{dx^3} = 0,$$

leading to

$$k_n = (2n + 1) \frac{\pi}{2L}. $$

(5)

To take into account viscoelastic phenomena, E is considered as complex valued, see, for example (Valette and Cuesta, 1993)

$$E = E_0(1 + i \eta),$$

(6)

where E_0 is the dynamical Young modulus, and η a dimensionless material loss factor. By injecting relations (5) and (6) into relation (4) and assuming that $\eta \ll 1$, one obtains the following important expressions:

$$\gamma_n = \omega_n + i \alpha_n$$

(7)

with

$$\omega_n = \sqrt{\frac{E_0 I}{\rho S} (2n + 1)^2 \frac{\pi^2}{4L^2}},$$

$$\alpha_n = \frac{\eta}{2} \omega_n.$$

(8)

Thus, one can rewrite the relation (2):

$$y(x,t) = \sum_{n} Y_n(x)e^{i\omega_n e^{-\alpha_n t}}. $$

(9)

It is accepted (Chaigne and Doutaut, 1997; McAdams et al., 2004; Ono and Norimato, 1985) that the damping factors in case of wooden bars are described by a parabolic form:

$$\alpha(f) = a_0 + a_2 f^2,$$

(10)

where the constants a_0 and a_2 depend on the wood species. This corresponds to a quality factor Q_n given by

$$Q_n = \frac{\pi f_n}{\omega_n} = \frac{\pi f_n}{a_0 + a_2 f_n^2}.$$

(11)

This behavior was experimentally verified, as shown in Fig. 3.

These expressions show that the vibrations of the bar, which are correlated with the radiated sound pressure, can be described by a sum of elementary components consisting of exponentially damped monochromatic signals. The frequency of these elementary components is inversely proportional to the square of the length of the bar, and their damping is proportional to the square of the frequency.

2. Additive synthesis model

The synthesis model aims at simulating the analytical solutions written in Eq. (9), which are expressed as a sum of exponentially damped sinusoids

$$s(t) = \sum_{n=1}^{N} A_n(x) \sin(\omega_n t) e^{-\alpha_n t}, $$

(12)

where N is the number of components, $\theta(t)$ the Heaviside function, A_n the amplitude, ω_n the frequency and α_n the damping coefficient of the nth component. The choice of either sine or cosine functions has no perceptual influence on the generated sounds but sine functions are often used in sound synthesis since they avoid discontinuities in the signal at $t=0$. Hence, the signal measured at a fixed location is considered to be well represented by the expression (12). Its spectral representation is given by...
and the \(z \) transform by

\[
S(z) = \sum_{n=1}^{N} A_n \left(\frac{1}{1 - e^{i(\omega_n - \alpha_n)} z^{-1}} - \frac{1}{1 - e^{i(\omega_n + \alpha_n)} z^{-1}} \right).
\]

B. Estimation of synthesis parameters

Before the tuning process, the recorded sounds described in Sec. II are equalized in loudness, analyzed, and then resynthesized with the synthesis model described above. The loudness was equalized by listening tests. For that, the synthesis parameters are directly estimated from the analysis of the recorded sounds. The estimation of the parameters defining the sound is obtained by fitting the recorded signal with the expression given in relation (12). To do so, we used a signal processing approach that consists of identifying the parameters of a linear filter by auto regressive and moving average (ARMA) analysis. We model the original signal as the output of a generic linear filter whose \(z \) transform is written

\[
H(z) = \frac{\sum_{m=0}^{M} a_m z^{-m}}{1 + \sum_{n=1}^{N} b_n z^{-n}} = a_0 c_N^{M} \prod_{m=1}^{M} \left(z - z_{0m} \right) \prod_{n=1}^{N} \left(z - z_{pn} \right),
\]

where \(z_{0m} \) are the zeros and \(z_{pn} \) are the poles of the system. Only the most prominent spectral components were modeled by \(H(z) \). These spectral components were determined within a 50 dB amplitude dynamic, the reference being the amplitude of the most prominent spectral peak. Hence, the number of poles \(N \) and zeros \(M \) of the linear ARMA filter is determined by the number of spectral components taken into account. The coefficients \(a_n \) and \(b_n \) are estimated using classical techniques such as Steiglitz-McBride (Steiglitz and McBride, 1965). The synthesis parameters corresponding to the amplitudes, frequencies, and damping coefficients of the spectral components are thus determined:

\[
\begin{align*}
A_n &= |H(z_{pn})|, \\
\omega_n &= \text{arg}(z_{pn}) f_s, \\
\alpha_n &= \log |z_{pn}| f_s,
\end{align*}
\]

where \(f_s \) is the sampling frequency. In addition to the synthesis model described above, we have taken into account the attack time. Actually, even though the rising time of the sounds is very short, it does influence the perception of the sounds. These rising times were estimated on the original sounds and were reproduced by multiplying the beginning of the synthetic signal by an adequate linear function. Synthesis sounds were evaluated by informal listening tests confirming that their original sound qualities were preserved. The synthesis quality was further confirmed by results from the professional instrument maker showing a similar classification of original and synthetic sounds (classifications C1 and C2, see Sec. VI A 1).

C. Tuning the sounds

The processing of tuning the sounds at the same pitch was based on some assumptions specific to the investigated stimulus set and consistent with the vibratory behavior of the bar. For the kind of sounds we are dealing with (impacted wooden bars), we assume the pitch to be related to the frequency of the first vibration mode, which is correlated with the length of the bar [cf. Eq. (8)]. Actually, if the length \(L \) changes to \(BL \), then \(\omega_1 \) changes to \(\omega_1 / \sqrt{B} \). As a consequence, a change in pitch corresponds to a dilation of the frequency components. These assumptions made it possible to virtually equalize the pitches of the recorded bank of sounds. To minimize the pitch deviation, the whole set of sounds was tuned by transposing the fundamental frequencies to 1002 Hz, which is the mean fundamental frequency of all the sounds. The amplitude of the spectral components was kept unchanged by the tuning process. Once again, no precise listening test was performed, but our colleagues found the synthesis sounds preserved the specificity of the material.

According to the discussion in III A 1, the damping is proportional to the square of the frequency. Thus, from the expression (10), a damping law can be defined by a parabolic function that can be written in a general form:

\[
a(\omega) = D_A \omega^2 + D_B \omega + D_C.
\]

As a consequence, when the pitch is changed, the damping coefficient of each tuned frequency component has to be evaluated according to the damping law measured on the original sound (cf. Fig. 4).

Figure 5 shows the comparison between the spectrum of a measured signal and the spectrum of a tuned signal after the resynthesis process. The entire sound data bank is available at http://www.lma.cnrs-mrs.fr/~kronland/JASA_Xylophone/sounds.html.
characteristics are well known. Thus, the mechanical descriptors are defined by the mass density, \(\rho \), the longitudinal modulus of elasticity, \(E_l \), and the transverse shear modulus, \(G_t \). The descriptors \(E_l \) and \(G_t \) can be calculated using Timoshenko’s model and the Bordoné solutions (Brancheriuai and Baillères, 2002). We have also considered the specific longitudinal modulus, \(E_l/\rho \), and the specific shear modulus, \(G_t/\rho \).

B. Signal descriptors

To characterize the sounds from an acoustical point of view, we calculated the following timbre descriptors (Caclin et al., 2005; McAdams et al., 1995): attack time, AT (the way the energy rises during the onset of the sound), spectral bandwidth, SB (spectral spread), spectral centroid, SCG (brightness), and spectral flux, SF (the way the sound vanishes).

The attack time, AT, a temporal descriptor, characterizes the signal onset and describes the time it takes for the signal to reach its maximum. It is generally estimated as the time it takes the signal to deploy its energy from 10% to 90% of the maximum. The spectral timbre descriptors characterize the organization of the spectral peaks resulting from the modal behavior of the bar vibration. One of the most well known is the spectral centroid, SCG, which is correlated with the subjective sensation of brightness (Beauchamps, 1982):

\[
SCG = \frac{\sum_k f(k)|\hat{s}(k)|}{\sum_k |\hat{s}(k)|}.
\]

where \(\hat{s} \) is the discrete Fourier transform of the signal \(s(t) \) and \(f \) the frequency. The spectral bandwidth, SB, measures the spread of the spectral components around the spectral centroid and is defined as (Marozeau, de Cheveigné, McAdams and Winsberg, 2003)

\[
SB = \sqrt{\frac{\sum_k |\hat{s}(k)|(f(k) - SCG)^2}{\sum_k |\hat{s}(k)|}}.
\]

Finally, the fourth classical timbre descriptor called the spectral flux, SF, is a spectro-temporal descriptor that measures the deformation of the spectrum with respect to time. In practice, the spectral flux is given by a mean value of the Pearson correlation calculated using the modulus of local spectral representations of the signal (McAdams et al., 1995):

\[
SF = \frac{1}{N\sum_{n=1}^{N} \frac{\langle s_n, s_{n-1} \rangle}{s_n^2s_{n-1}^2}},
\]

where \(N \) represents the number of frames, \(s \) the modulus of the local spectrum at the discrete time \(n \), and \(\langle \cdot, \cdot \rangle \) the discrete scalar product.

In addition to these well-known timbre descriptors, we propose to consider various acoustical parameters chosen as function of the specificities of the impact sounds, i.e., the

IV. EXPERIMENTAL PROTOCOL

Sounds from different wooden bars were evaluated focusing on the perceived musical quality of the wood samples. The participant was placed in front of a computer screen on which the sounds (all represented as identical crosses) were randomly distributed. The participant was asked to place the sounds on a bidimensional computer display. In particular, he was told that the horizontal dimension of the display represented an axis of musical quality so that sounds judged as having the worst/best quality were to be placed on the leftmost/rightmost part of the display. The participant could listen to the sounds as often as he wanted by simply clicking on the cross. The tests were carried on a laptop Macintosh equipped with a Sony MDR CD550 headset.

For this study, one instrument maker specialized in xylophone manufacture carried the task. For a complete perceptual study, more participants would, of course, be needed. As a first step we aimed at presenting a new methodology for an interdisciplinary approach uniting instrument makers and specialists within acoustics, signal processing, and wood sciences.

Three tests were conducted using this experimental protocol. The instrument maker carried the classification with the original sounds (recorded sounds with different pitches), called C1 (Brancheriuai et al., 2006a; Brancheriuai et al., 2006b). A second classification, called C2, using the synthesized sounds (resynthesis of the original sounds with different pitches) was done two years later. The comparison of C1 and C2 allowed us to check the quality of the resynthesis as well as the reliability of our experimental participant. The third test (C3) was carried on the signals tuned to the same pitch. The xylophone maker was not aware of the synthetic nature of sounds in C2 and C3. In particular, he was told that, for classification C3, the same pieces of wood had been sculpted in order to tune the sounds to the same fundamental frequency. Classification C3 is presented in Table III.

V. DESCRIPTORS

A. Mechanical descriptors

The wood species used for this study have been intensively examined at CIRAD and their anatomical and physical

FIG. 5. Comparison between a spectrum of a measured signal (dashed trace) and the spectrum of the associated tuned signal (solid trace).
amplitude ratio between the first two frequency components of the sound, noted A_{21}, and the damping and the inharmonicity descriptors. The last two parameters are described below in more detail. The damping descriptor is defined from the Eq. (14) by the set of coefficients $\{D_A, D_B, D_C\}$ traducing the sound decrease. As the damping is the only parameter responsible for the variation of the spectral representation of the signal with respect to time, this descriptor is related to the spectral flux, SF. In addition, the damping coefficients α_1 and α_2 of components 1 and 2 have been included in the list of signal descriptors. The inharmonicity characterizes the relationship between the partials and the fundamental mode. This parameter is linked with the consonance, which is an important clue in the perceptual differentiation of sounds. For each spectral component, inharmonicity is defined by

$$I(n) = \frac{\omega_n}{\omega_0} - n.$$ \hspace{1cm} (18)

From this expression, we propose an inharmonicity descriptor defined by a set of coefficients $\{I_A, I_B, I_C\}$ obtained by fitting $I(n)$ with a parabolic function, as suggested by the calculation $I(n)$ from Eq. (8):

$$I(n) = I_A n^2 + I_B n + I_C.$$ \hspace{1cm} (19)

VI. RESULTS

Collected behavioral data could be considered as ordinal. Nevertheless, since the task consisted in placing the sounds on a quality axis “as a function of its musical quality,” the relative position of the sounds integrates a notion of perceptual distance. Moreover, the classifications do not contain two sounds with the same position and do not show categories (see Table III). It was thus decided to consider the data as providing a quantitative estimate of perceived musical quality for the wood samples, the value associated with each species being given by its abscissa from 0 (worst quality) to 10 (best quality) on the quality axis. The main interest in using quantitative scales is the possibility of constructing an arithmetic model for perceived wood quality which can be easily used to estimate the musical quality of woods (and sounds) not considered in our experiments. All the statistical analyses were conducted with SPSS software (Release 11.0.0, LEAD Technologies).

A. Qualitative analysis—Choice of the variables

1. Resynthesis quality—Robustness of the classification

Only one participant performed the classifications on the basis of his professional skill, and his judgment of sound quality was used to build reference quality scales. The xylophone maker is thus considered as a “sensor” for measuring the acoustical wood quality. The raw classifications C1 and C2 were compared using the Wilcoxon signed rank test to evaluate the resynthesis quality of the model. Moreover, this comparison allowed us to evaluate the robustness of the xylophone maker classification. No particular distribution was assumed for the classifications. The Wilcoxon test is thus appropriate for comparing the distributions of the two classifications (C1, C2). The significance value of the Wilcoxon test ($p=0.624$) for (C1, C2) indicates that classification C1 equals classification C2. There was no significant difference in the xylophone maker responses between C1 and C2.

2. Influence of the tuning process

The same Wilcoxon signed rank test was performed with classification C2 and classification C3 of tuned sounds. The hypothesis of equal distribution is rejected considering classifications C2 and C3. A significant difference between C2 and C3 ($p=0.001$) is due to the tuning process of sounds, which altered the sound perception of the xylophone maker. The arithmetic difference (C3-C2) was thus computed and related to the value of the fundamental frequency by using the Pearson correlation coefficient (Fig. 6). This coefficient value was found significant at the 1% level ($R=0.59$).

B. Quantitative analysis

1. Descriptor analysis

The 18 parameters presented in Table I were estimated for the tuned sounds and using standard mechanical calibrations. They are grouped into mechanical/physical descriptors and signal descriptors. In practice, for the spectral descriptors, the Fourier transform was estimated using a fast Fourier transform (FFT) algorithm. The length of the FFT was chosen so that it matches the longest sound, i.e., 216 samples. For the SF calculation, the number of samples was 256 with an overlap of 156 samples. A Hamming window was used to minimize the ripples. Mechanical descriptors are linked with the intrinsic behavior of each sample but also linked with signal descriptors, as shown in Fig. 7. Indeed, the bivariate coefficients of determination matrix calculated on the basis of the 18 characteristic parameters revealed close collinearity between the parameters. Considering the strong relationship between the parameters, the statistical analyses were conducted by grouping the mechanical/physical descriptors and the signal descriptors in order to find those that best explain the classification C3.

A principal component analysis was thus conducted (Table II). Principal components analysis finds combinations of variables (components) that describe major trends in the data. This analysis generated a new set of parameters derived from the original set in which the new parameters (principal...
components) were not correlated and closely represented the variability of the original set. Each original parameter was previously adjusted to zero mean and unit variance so that eigenvalues could be considered in choosing the main factors. In this case, the eigenvalues sum the number of original variables represented by each factor. The principal components selected thus corresponded to those of eigenvalue superior or equal to unity. Table II shows that six principal components accounted for 87% of all information contained in the 18 original parameters.

The relationships between original variables and principal components are presented in Figs. 8(a) and 8(b). These figures display the bivariate coefficient of determination between each principal component and each original parameter; the bivariate coefficient corresponds to the square loading coefficient in this analysis. The variance of the inharmonicity coefficients \(\{I_A, I_B, I_C\} \) and the damping coefficients \(\{D_A, D_B, D_C\} \) are captured by the first principal component and to a lesser degree by the third component [Fig. 8(a)]. The damping coefficients \((\alpha_1 \text{ and } \alpha_2) \), however, are mainly linked with the second component. This component is also linked with the amplitude ratio \(A_{2/1} \) and with the timbre descriptors (SCG, SB, SF, AT). The variance of the mechanical/physical descriptors is scattered between all the principal components (parameter 1 is linked with PC1 and 2; parameter 2 with PC1 and 4; parameter 3 with PC3 and 5; parameter 4 with PC2, 3, and 4; and parameter 5 with PC3 and 5).

2. Relationship between the descriptors and the acoustic classification of tuned sounds

a. Bivariate analysis. Figure 9 presents the results of bivariate analysis between characteristic parameters and classification C3. Assuming a linear relationship, the parameter \(\alpha_1 \) (temporal damping of mode 1) appeared to be the best individual predictor with a \(R^2 \) value of 0.72. The second most significant predictor was the spectral flux, SF, with a \(R^2 \) value of 0.38. The other parameters were of minor importance considering classification C3. Note that the only mechanical parameter of interest was \(E_t/\rho \) (specific longitudinal modulus) with a relatively low \(R^2 \) value of 0.25. Furthermore, the mass density, \(\rho \), was not reflected in the acoustic classification (no significant \(R^2 \) value at the 1% level). Light woods and heavy woods were thus not different.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\rho)</td>
<td>Mass density (kg/m³)</td>
</tr>
<tr>
<td>2</td>
<td>(E_t)</td>
<td>Longitud. modulus of elasticity (MPa)</td>
</tr>
<tr>
<td>3</td>
<td>(G_t)</td>
<td>Shear modulus (MPa)</td>
</tr>
<tr>
<td>4</td>
<td>(E_t/\rho)</td>
<td>Specific longitudinal modulus</td>
</tr>
<tr>
<td>5</td>
<td>(G_t/\rho)</td>
<td>Specific shear modulus</td>
</tr>
<tr>
<td>6</td>
<td>(A_{2/1})</td>
<td>Amplitude ratio of mode 2 and 1</td>
</tr>
<tr>
<td>7</td>
<td>(\alpha_1)</td>
<td>Temporal damping of mode 1 (s⁻¹)</td>
</tr>
<tr>
<td>8</td>
<td>(\alpha_2)</td>
<td>Temporal damping of mode 2 (s⁻¹)</td>
</tr>
<tr>
<td>9</td>
<td>SCG</td>
<td>Spectral centroid (Hz)</td>
</tr>
<tr>
<td>10</td>
<td>SB</td>
<td>Spectral bandwidth (Hz)</td>
</tr>
<tr>
<td>11</td>
<td>SF</td>
<td>Spectral flux</td>
</tr>
<tr>
<td>12</td>
<td>AT</td>
<td>Attack time (ms)</td>
</tr>
<tr>
<td>13</td>
<td>(D_A)</td>
<td>Coefficient (D_A) of (\alpha(\omega))</td>
</tr>
<tr>
<td>14</td>
<td>(D_B)</td>
<td>Coefficient (D_B) of (\alpha(\omega))</td>
</tr>
<tr>
<td>15</td>
<td>(D_C)</td>
<td>Coefficient (D_C) of (\alpha(\omega))</td>
</tr>
<tr>
<td>16</td>
<td>(I_A)</td>
<td>Coefficient (I_A) of (I(n))</td>
</tr>
<tr>
<td>17</td>
<td>(I_B)</td>
<td>Coefficient (I_B) of (I(n))</td>
</tr>
<tr>
<td>18</td>
<td>(I_C)</td>
<td>Coefficient (I_C) of (I(n))</td>
</tr>
</tbody>
</table>

Table II. Variance explained by the principal components (number of initial variables=18, number of samples=59).

<table>
<thead>
<tr>
<th>Component</th>
<th>Eigen val.</th>
<th>% of Var.</th>
<th>Cumul. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4.0</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>II</td>
<td>3.9</td>
<td>21.9</td>
<td>44.3</td>
</tr>
<tr>
<td>III</td>
<td>3.5</td>
<td>19.3</td>
<td>63.7</td>
</tr>
<tr>
<td>IV</td>
<td>1.8</td>
<td>10.1</td>
<td>73.8</td>
</tr>
<tr>
<td>V</td>
<td>1.2</td>
<td>6.7</td>
<td>80.5</td>
</tr>
<tr>
<td>VI</td>
<td>1.1</td>
<td>6.1</td>
<td>86.6</td>
</tr>
<tr>
<td>Botanical name</td>
<td>Density (kg/m³)</td>
<td>α_1 (s⁻¹)</td>
<td>SB (Hz)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Pericopsis elata Van Meeuw</td>
<td>680</td>
<td>21.76</td>
<td>2240</td>
</tr>
<tr>
<td>Scottellia klaineana Pierre</td>
<td>629</td>
<td>23.97</td>
<td>2659</td>
</tr>
<tr>
<td>Ongokea gore Pierre</td>
<td>842</td>
<td>26.07</td>
<td>2240</td>
</tr>
<tr>
<td>Humbertia madagascariensis Lamk.</td>
<td>1234</td>
<td>28.84</td>
<td>3820</td>
</tr>
<tr>
<td>Ocotea rubra Mez</td>
<td>623</td>
<td>23.47</td>
<td>2521</td>
</tr>
<tr>
<td>Khaya grandifoliola C.D.C.</td>
<td>646</td>
<td>33.02</td>
<td>2968</td>
</tr>
<tr>
<td>Khaya senegalensis A. Juss.</td>
<td>792</td>
<td>33.98</td>
<td>3101</td>
</tr>
<tr>
<td>Coala edulis Baill.</td>
<td>1048</td>
<td>27.6</td>
<td>2674</td>
</tr>
<tr>
<td>Tarrietia javanica Bl.</td>
<td>780</td>
<td>20.33</td>
<td>2198</td>
</tr>
<tr>
<td>Entandrophragma cylindricum Sprague</td>
<td>734</td>
<td>30.6</td>
<td>2592</td>
</tr>
<tr>
<td>Afzelia pachyloba Harms</td>
<td>742</td>
<td>20.56</td>
<td>2048</td>
</tr>
<tr>
<td>Swietenia macrophylla King</td>
<td>571</td>
<td>20.99</td>
<td>1991</td>
</tr>
<tr>
<td>Aucoumea klaineana Pierre</td>
<td>399</td>
<td>32.17</td>
<td>2275</td>
</tr>
<tr>
<td>Humbertia madagascariensis Lamk.</td>
<td>1277</td>
<td>23.36</td>
<td>3171</td>
</tr>
<tr>
<td>Faucherea thouvenotii H. Lec.</td>
<td>1061</td>
<td>20.18</td>
<td>2512</td>
</tr>
<tr>
<td>Ceiba pentandra Gaertn.</td>
<td>299</td>
<td>29.16</td>
<td>2396</td>
</tr>
<tr>
<td>Letestua durissima H. Lec.</td>
<td>1046</td>
<td>19.56</td>
<td>2770</td>
</tr>
<tr>
<td>Monopetalanthus heitzi Pellegr.</td>
<td>466</td>
<td>23.98</td>
<td>2344</td>
</tr>
<tr>
<td>Conniphora sp.</td>
<td>390</td>
<td>16.52</td>
<td>1269</td>
</tr>
<tr>
<td>Dalbergia sp.</td>
<td>916</td>
<td>14.29</td>
<td>2224</td>
</tr>
<tr>
<td>Hymenolobium sp.</td>
<td>600</td>
<td>20.58</td>
<td>2402</td>
</tr>
<tr>
<td>Pseudoptedania suaveolens Brenan</td>
<td>875</td>
<td>20.8</td>
<td>1989</td>
</tr>
<tr>
<td>Parkia nitida Miq.</td>
<td>232</td>
<td>26.86</td>
<td>1440</td>
</tr>
<tr>
<td>Bagassa guianensis Aubl.</td>
<td>1076</td>
<td>20.68</td>
<td>2059</td>
</tr>
<tr>
<td>Discoglycrema caloneura Prain</td>
<td>406</td>
<td>34.27</td>
<td>1506</td>
</tr>
<tr>
<td>Brachylaena ramiflora Humbert</td>
<td>866</td>
<td>21.85</td>
<td>2258</td>
</tr>
<tr>
<td>Sinaroba amara Aubl.</td>
<td>455</td>
<td>21.26</td>
<td>1654</td>
</tr>
<tr>
<td>Gossweilerodendron balsamiferum Harms</td>
<td>460</td>
<td>35.26</td>
<td>1712</td>
</tr>
<tr>
<td>Manilkara mabokeensis Aubrev.</td>
<td>944</td>
<td>23.89</td>
<td>1788</td>
</tr>
<tr>
<td>Shorea-rubro squamata Dyer</td>
<td>569</td>
<td>23.9</td>
<td>1604</td>
</tr>
<tr>
<td>Autanella congolensis A. Chev.</td>
<td>956</td>
<td>38.97</td>
<td>3380</td>
</tr>
<tr>
<td>Entandrophragma angolense C. DC.</td>
<td>473</td>
<td>22.79</td>
<td>1612</td>
</tr>
<tr>
<td>Distemonanthus benthamianus Baill.</td>
<td>779</td>
<td>19.77</td>
<td>2088</td>
</tr>
<tr>
<td>Terminalia superba Engl. & Diels</td>
<td>583</td>
<td>21.89</td>
<td>2004</td>
</tr>
<tr>
<td>Nesogordonia papaverifera R.Cap.</td>
<td>768</td>
<td>27.96</td>
<td>2097</td>
</tr>
<tr>
<td>Albizia ferruginea Benth.</td>
<td>646</td>
<td>24.71</td>
<td>2221</td>
</tr>
<tr>
<td>Gymnostemon zaizou. Aubrev. & Pellegr.</td>
<td>380</td>
<td>30.15</td>
<td>2130</td>
</tr>
<tr>
<td>Anthonotha fragrans Exell & Hillcoat</td>
<td>777</td>
<td>24.87</td>
<td>1926</td>
</tr>
<tr>
<td>Piptadeniastrom africanum Brenan</td>
<td>975</td>
<td>22.41</td>
<td>3226</td>
</tr>
<tr>
<td>Guibourtia ehir J. Leon.</td>
<td>783</td>
<td>26.36</td>
<td>2156</td>
</tr>
<tr>
<td>Manilkara huberi Standl.</td>
<td>1096</td>
<td>35.11</td>
<td>2692</td>
</tr>
<tr>
<td>Pometia pinnata Forst.</td>
<td>713</td>
<td>25.5</td>
<td>1835</td>
</tr>
<tr>
<td>Glycydendron amazonicum Duchêne</td>
<td>627</td>
<td>20.41</td>
<td>2292</td>
</tr>
<tr>
<td>Cunonia austrocaledonica Brong. Gris.</td>
<td>621</td>
<td>31.05</td>
<td>3930</td>
</tr>
<tr>
<td>Nothofagus aequilateralis Steen.</td>
<td>1100</td>
<td>37.76</td>
<td>3028</td>
</tr>
<tr>
<td>Schefflera gabriellae Baill.</td>
<td>570</td>
<td>28.16</td>
<td>1872</td>
</tr>
<tr>
<td>Gymnostoma nodiflorum Johnst.</td>
<td>1189</td>
<td>33</td>
<td>3013</td>
</tr>
<tr>
<td>Dyssoxylum sp.</td>
<td>977</td>
<td>23.85</td>
<td>2106</td>
</tr>
<tr>
<td>Calophyllum caledonicum Vieill.</td>
<td>789</td>
<td>19.82</td>
<td>2312</td>
</tr>
<tr>
<td>Gyrocarpus americans Jacq.</td>
<td>206</td>
<td>38.39</td>
<td>1982</td>
</tr>
<tr>
<td>Pyrilmus sphaerocatum Aubrev.</td>
<td>793</td>
<td>30.83</td>
<td>2318</td>
</tr>
<tr>
<td>Cedrela odorata L.</td>
<td>512</td>
<td>30.45</td>
<td>2070</td>
</tr>
<tr>
<td>Moronoea coccinea Aubl.</td>
<td>953</td>
<td>21.67</td>
<td>1781</td>
</tr>
<tr>
<td>Goupia glabra Aubl.</td>
<td>885</td>
<td>45.61</td>
<td>2525</td>
</tr>
<tr>
<td>Manilkara huberi Standl.</td>
<td>1187</td>
<td>22.6</td>
<td>2917</td>
</tr>
<tr>
<td>Micropholis venulosa Pierre</td>
<td>665</td>
<td>22.51</td>
<td>3113</td>
</tr>
<tr>
<td>Cedrelinga catenaformis Dudek</td>
<td>490</td>
<td>22.5</td>
<td>1626</td>
</tr>
<tr>
<td>Vouacapoua americana Aubl.</td>
<td>882</td>
<td>23.18</td>
<td>1986</td>
</tr>
<tr>
<td>Tarrietia densiflora Aubrev & Normand</td>
<td>603</td>
<td>29.76</td>
<td>2326</td>
</tr>
</tbody>
</table>
differentiated by the xylophone maker in the acoustic classification.

b. Multivariate linear regression analysis. The second step of the analysis was to build a robust linear model to take into account the most significant predictors. The robustness of the model assumes that no multicollinearity among the variables exists (Dillon and Goldstein, 1984). The stepwise selection method was thus used to perform multivariate analysis. This method enters variables into the model one by one and tests all the variables in the model for removal at each step. Stepwise selection is designed for the case of correlations among the variables. Other automatic selection procedures exist (forward selection and backward elimination, for example), and the models obtained by these methods may differ, especially when independent variables are highly intercorrelated. Because of the high correlation between variables, several regression models almost equally explain classification C3. However, stepwise selection was used to build one of the most significant models with noncorrelated variables relating to different physical phenomena.

The final linear model obtained by stepwise variable selection included the two predictors, α_1 and SB. The predicted classification is given by:

$$\hat{C}_{3\text{Linear}} = -3.82 \times 10^{-1} \alpha_1 - 1.32 \times 10^{-3} SB + 17.52.$$

(20)

The multiple coefficient of determination was highly significant ($R^2=0.776$ and Adjusted $R^2=0.768$, Fig. 10) and each regression coefficient was statistically different from zero (significance level: 1%). The predictor α_1 was predominant in the model with a partial coefficient value of $R_{\alpha_1} = -0.84$ ($R_{SB} = -0.44$). The negative sign of R_{α_1} showed that samples with high damping coefficients were associated with a poor acoustic quality.

Partial least squares regression showed that the damping coefficient α_1 was predominant in the model (Brancheriau et al., 2006b). However, the physical significance of the partial least squares model was difficult to explain because the original variables were grouped in latent variables. The stepwise procedure was thus used to better understand the regression results.

The multivariate analysis differed from the bivariate analysis by the replacement of SF by SB, because the selected set of predictors was formed by noncorrelated variables. SB was thus selected because of the low correlation between α_1 and SB with a coefficient value of $R_{\alpha_1/SB}=0.29$ instead of SF with a value of $R_{\alpha_1/SF}=-0.60$.

FIG. 8. Bivariate determination coefficient between original variables and principal components: (a) for PC1, PC2 and PC3; (b) for PC4, PC5 and PC6.

FIG. 10. Predicted vs observed C3 classification (linear predictors α_1 and SB, $R^2=0.77$, $N=59$).
Principal components regression (PCR) was another way to deal with the problem of strong correlations among the variables. Instead of modeling the classification with the variables, the classification was modeled on the principal component scores of the measured variables (which are orthogonal and therefore not correlated). The PCR final model was highly significant with a multiple R^2 value of 0.741 and Adjusted R^2 value of 0.721. Four principal components were selected and the resulting scatter plot was similar to the one in Fig. 10. Comparing the two multivariate models, we found the PCR model to be less relevant than the stepwise one. The R^2 of the PCR model was indeed lower than the R^2 of the stepwise model. Furthermore, the PCR model included four components while only two independent variables were included in the stepwise model. The difference between these two models was explained by the fact that the whole information contained in the characteristic parameters (Table I) was not needed to explain the perceptual classification. The PCR procedure found components that capture the greatest amount of variance in the predictor variables, but did not build components that both capture variance and achieve correlation with the dependent variable.

c. Multivariate nonlinear regression analysis. The configuration of points associated with the linear model (C3, a_1, and SB) in Fig. 10 indicated a nonlinear relationship. This was particularly true for samples of poor acoustic quality (negative values of the standardized predicted classification). As a final step of the analysis, we built a nonlinear model of the behavioral response. In particular, we transformed the values predicted by the linear model $\hat{C}_{3\text{Linear}}$ using a sigmoidal transform. Such transform was consistent with the relationship between C3 and $\hat{C}_{3\text{Linear}}$ (see Fig. 10). The fitting coefficients were extracted via the Levenberg-Marquardt optimization procedure by minimizing the residual sum of squares (dependent variable C3 and independent variable $\hat{C}_{3\text{Linear}}$: predicted classification with the linear modeling). The final equation is written as follows:

$$\hat{C}_{3\text{sigmoid}} = \frac{10}{1 + e^{-\frac{\hat{C}_{3\text{Linear}} - 5}{1.64}}}$$

with $\hat{C}_{3\text{Linear}}$ defined by Eq. (20). The multiple coefficient of determination was highly significant ($R^2=0.82$) and each nonlinear regression coefficient was statistically different from zero (significance level: 1%). The nonlinear model provided a better fit than the linear model; moreover no apparent systematic feature appeared, indicating that residuals were randomly distributed (Fig. 11).

VII. DISCUSSION

In this section, we discuss the main results presented above, attempting to better understand the sound descriptors’ influence on the xylophone maker classification. Further on, we discuss the influence of the pitch and the relationship between the wood anatomy and the produced sounds.

A. On the reliability of the xylophone maker

As we pointed out in the introduction, this paper does not aim to give categorical clues for choosing interesting species of wood for xylophone manufacturing. Nevertheless, note that these first conclusions probably accurately reflect what xylophone makers look for. Although we tested our methodology with only one renowned xylophone maker, the results show that:

- In accordance with the xylophone maker community, our maker chose Dalbergia sp. as the best species. Moreover, this choice was confirmed on both tuned and original sound classifications.
- The comparison of classifications C1 and C2 showed no significant differences according to the Wilcoxon test.

These observations confirm the good reliability of our xylophone maker and the accuracy of the results, which were further informally confirmed by both instrument makers and musicians.

B. Relation between descriptors and wood classification

The classification by the xylophone maker is correlated with several descriptors. Those that play an important role are three descriptors related to the time course of the sound (a_1, a_2 and SF) and two descriptors related to the spectral content of the sound (SCG and SB). Note that the physical descriptors linked with the wood properties do not explain by themselves the classification of the instrument maker, even though E_i/p seems to be the most pertinent one. The relatively low importance of the specific modulus regarding classification C3 could be explained by its high correlation with the fundamental frequency ($R^2=0.91$) and its low correlation with the temporal damping coefficient a_1 ($R^2=0.26$). Most of the descriptors are correlated; these correlations are coherent with the physics and are shown in a qualitative way in Fig. 7. Both coefficients of the polynomial decomposition of $a(\omega)$ are strongly correlated. So are the coefficients of the polynomial decomposition of $I(n)$. This finding points out the relative consistency in the behavior of the damping and...
the inharmonicity laws with respect to the species. Parameters \(\alpha_1 \) and \(\alpha_2 \) are also correlated, showing the monotonic behavior of damping with respect to the frequency: the higher the frequency, the higher the damping. As a consequence, both \(\alpha_1 \) and \(\alpha_2 \) are correlated with the spectral flux, SF, since these descriptors are the only ones that relate to the time course of the sound.

Both global spectral descriptors, SCG and SB, are also correlated, showing that their increase is strongly related to the addition of high frequency energy. These descriptors are in addition correlated with the ratio \(A_{2/1} \) and with the physical descriptors \(\rho \) and \(E_i/\rho \). This correlation can be explained by the way the energy is distributed through the excited modes. Actually, assuming that the bars are impacted identically (good reproducibility of the impact in the experimental setup), the initial energy injected depends on the impedance of each bar. Since the bars were impacted in the transversal direction, one can assume that the transversal Young modulus of elasticity together with the mass density are the main parameters in the difference of amplitudes of modes 1 and 2.

The multivariate linear regression analysis highlighted two main descriptors: \(\alpha_1 \) and SB. These descriptors are non-correlated and give rise to a linear predictor of the classification \(C_3^{\text{Linear}} \) that explains 77% of the variance. This model is of great importance in the choice of species. Actually, it emphasizes the fact that the xylophone maker looks for a highly resonant sound (the coefficient of \(\alpha_1 \) is negative) containing a few spectral components (the coefficient of SB is also negative). Such a search for a crystal-clear sound could explain the general choice of Dalbergia sp., which is the most resonant species and the most common in xylophone bars. Indeed, the predominance of \(\alpha_1 \) agrees with the first rank of Dalbergia sp., for which \(\alpha_1 = 14.28 \text{ s}^{-1} \) is the smallest in the data bank \((14.28 \text{ s}^{-1} < \alpha_1 < 45.61 \text{ s}^{-1}) \) and SB = 2224 Hz is medium range in the data bank (1268 Hz < SB < 3930 Hz). Holz (1996) showed that the damping factor value \(\alpha_1 \) should be lower than about 30 s\(^{-1}\) for a fundamental frequency value of 1000 Hz, which corresponds to the mean value of the study. The average value of \(\alpha_1 \) is indeed 26.13 s\(^{-1}\) with a standard deviation of 6.18 s\(^{-1}\). Actually, xylophone makers use a specific way of carving the bar by removing substance in the middle (Fletcher and Rossing, 1998). This operation tends to minimize the importance of partial 2, decreasing both the SCG and the SB. The importance of \(\alpha_1 \) in the model is in line with several studies showing that the damping is a pertinent clue in the perception of impacted materials (Klatsky et al., 2000; Wildes and Richards, 1988). Concerning parameter SB, the spectral distribution of energy is also an important clue, especially for categorization purposes.

The linear classification prediction has been improved by taking into account nonlinear phenomena. The nonlinear model then explains 82% of the variance. The nonlinear relationship between the perceptual classification and predictors (\(\alpha_1 \) and SB) was explained by the instrument maker’s strategy during the evaluation of each sample. The xylophone maker proceeded by first identifying the best samples and then the worst samples. This first step gave him the upper and lower bounds of the classification. The final step was to sort the samples of medium quality and place them between the bounds. One could deduce that three groups of acoustic quality (good, poor, and medium quality) were formed before the classification and that inside these groups the perceptual distance between each sample was different. The sigmoid shape indicated that the perceptual distance was shorter for good and poor quality groups than for medium quality groups. As a consequence, the nonlinear model is probably linked with the way the maker proceeded and cannot be interpreted as an intrinsic model for wood classification. Another explanation for the nonlinear relationship can also be found in the nonlinear transform relating physical and perceptual dimensions.

Note finally that there was no correlation between the classification and the wood density. However it is known that the wood density is of great importance for instrument makers. Holz (1996) suggested that the “ideal” xylophone wood bars would have density values between 800 and 950 kg/m\(^3\). This phenomenon is due to the way we designed our experimental protocol, focusing on the sound itself and minimizing multi-sensorial effects (avoiding the access to visual and tactile information). Actually, in a situation where the instrument maker has access to the wood, bars with weak density are rejected for manufacturing and robustness purposes, irrespective of their sound quality.

C. Influence of the fundamental frequency (pitch) on the classification

As discussed previously, timbre is a key feature for appreciating sound quality and it makes it possible to distinguish tones with equal pitch, loudness, and duration (ANSI, 1973). Since this study aims at better understanding which timbre descriptor is of interest for wood classification, one expected differences in the classification of the tuned and the original sound data banks. The difference between classifications C2 (various pitches) and C3 (same pitches) shows a clear linear tendency; it is represented in Fig. 6 as a function of the original fundamental frequency of the bars. The difference is negative (respectively positive) for sounds whose fundamental frequencies are lower (respectively higher) than the mean frequency. The Pearson coefficient associated with the linear relationship between the arithmetic difference of the classification and the fundamental frequency leads to the important observation that a wooden bar with a low fundamental frequency tends to be upgraded while a wooden bar with a high fundamental frequency tends to be downgraded. This finding agrees with our linear prediction model, which predicts weakly damped sounds would be better classified than highly damped ones. Actually, sounds with low (respectively high) fundamental frequencies were transposed toward high (respectively low) frequencies during the tuning process, implying \(\alpha_1 \) increase (respectively decrease), since the damping is proportional to the square of the frequency (cf. Sec. III C). As an important conclusion, one may say that the instrument maker cannot judge the wood itself independently of the bar dimensions, since the classification is influenced by the pitch changes, favoring wood samples generating low fundamental frequency sounds.
Once again, note the good reliability of our instrument maker, who did not change the classification of sounds whose fundamental frequency was close to the mean fundamental frequency of the data bank (i.e., sounds with nearly unchanged pitch). Actually, the linear regression line passes close to 0 at the mean frequency 1002 Hz. Moreover, the Dalbergia sp. was kept at the first position after the tuning process, suggesting that no dramatic sound transformations had been made. In fact, this sample was transposed upwards by 58 Hz, changing α_1 from 13.6 s$^{-1}$ to 14.28 s$^{-1}$, which still was the smallest value of the tuned data bank.

D. Relationship between wood anatomy and perceived musical quality

The damping α_1 of the first vibrational mode was an important descriptor explaining the xylophone maker classification. Equation (11) shows that this descriptor is related to the quality factor Q, and consequently to the internal friction coefficient ϕ (inverse of the quality factor Q), which depends on the anatomical structure of the wood. An anatomical description of the best classified species has been discussed in a companion article (Brancheriau et al., 2006b). We briefly summarize the main conclusions and refer the reader to the article for more information. A draft anatomical portrait of a good acoustic wood could be drawn up on the basis of our analysis of wood structures in the seven acoustically best and seven poorest woods. This portrait should include a compulsory characteristic, an important characteristic, and two or three others of lesser importance. The key trait is the axial parenchyma. It should be paratracheal, and not very abundant if possible. If abundant (thus highly confluent), the bands should not be numerous. Apotracheal parenchyma can be present, but only in the form of well-spaced bands (e.g., narrow marginal bands). The rays (horizontal parenchyma) are another important feature. They should be short, structurally homogeneous but not very numerous. The other characteristics are not essential, but they may enhance the acoustic quality. These include:

- Small numbers of vessels (thus large);
- A storied structure;
- Fibers with a wide lumen (or a high flexibility coefficient, which is the ratio between the lumen width and the fiber width; it is directly linked with the thickness of the fiber).

These anatomical descriptions give clues for better choosing wood species to be used in xylophone manufacturing. They undoubtedly are valuable for designing new musical materials from scratch, such as composite materials.

VIII. CONCLUSION

We have proposed a methodology associating analysis-synthesis processes and perceptual classifications to better understand what makes the sound produced by impacted wooden bars attractive for xylophone makers. This methodology, which focused on timbre-related acoustical properties, requires equalization of the pitch of recorded sounds. Statistical analysis of the classifications made by an instrument maker highlighted the importance of two salient descriptors: the damping of the first partial and the spectral bandwidth of the sound, indicating he searched for highly resonant and crystal-clear sounds. Moreover, comparing the classifications of both the original and processed sounds showed how the pitch influences the judgment of the instrument maker. Indeed, sounds with originally low (respectively high) fundamental frequency were better (lesser) classified before the tuning process than after. This result points to the preponderance of the damping and reinforces the importance of the pitch manipulation to better dissociate the influence of the wood species from that of the bar geometry. Finally, the results revealed some of the manufacturers’ strategies and pointed out important mechanical and anatomical characteristics of woods used in xylophone manufacturing. From a perceptual point of view, the internal friction seems to be the most important characteristic of the wood species. Nevertheless, even though no correlation has been evidenced between the classification and the wood density, it is well known that this parameter is of great importance for instrument makers as evidence of robustness. As mentioned in the introduction, this work was the first step towards determining relations linking sounds and wood materials. Future works will aim at confirming the results described in this paper by taking into account classifications made by other xylophone makers in the statistical analysis. We plan to use this methodology on a new set of wood species having mechanical and anatomical characteristics similar to those well classified in the current test. This should point out unused wood species of interest to musical instrument manufacturers and will give clues for designing new musical synthetic materials.

ACKNOWLEDGMENTS

The authors thank Robert Hébrard, the xylophone maker who performed the acoustic classification of the wood species. They are also grateful to Pierre Détienne for useful advice and expertise in wood anatomy. They also thank Bloen Metzger and Dominique Peyroche d’Arnaud for their active participation in the experimental design and the acoustical analysis, and Jérémy Marozeau who provided the graphical interface for the listening test. We would also thank the reviewers for useful suggestions.

Brancheriau, L., and Baillères, H. (2002). “Natural vibration analysis of

