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Abstract. Timbre can be defined as feature of an auditory stimulus
that allows us to distinguish the sounds which have the same pitch and
loudness. In this paper, we explore timbre based perceptual feature for
singer identification. We start with a vocal detection process to extract
the vocal segments from the sound. The cepstral coefficients, which reflect
timbre characteristics, are then computed from the vocal segments. The
cepstral coefficients of timbre are formulated by combining information
of harmonic and the dynamic characteristics of the sound such as vibrato
and the attack-decay envelope of the songs. Bandpass filters that spread
according to the octave frequency scale are used to extract vibrato and
harmonic information of sounds. The experiments are conducted on a
database of 84 popular songs. The results show that the proposed timbre
based perceptual feature is robust and effective. We achieve an average
error rate of 12.2% in segment level singer identification.
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1 Introduction

The rapid evolution of the digital multimedia technologies in computer and In-
ternet technology has enabled huge multimedia database. With these continually
growing databases, automatic music information retrieval (MIR) has become in-
creasingly important. Singer Identification (SingerID) is one of the important
tasks in MIR. It is the process of identifying the singer of a song. In general, a
SingerID process comprises three major steps.

The first step is detecting singing segments (vocals) in a song. Vocals can be
either pure singing voice or a mixture of singing voice with background instru-
mentals (nonvocals). The second step is singer feature computation. Features
are extracted from vocal segments. The last step is formulating singer classifier
using feature parameters. In this paper, we propose new solutions for the second
step of singer feature computation.

Earlier studies in SingerID use features such as Mel Frequency Cepstral Coef-
ficients (MFCC) [6]. Recently, studies start looking into perceptually motivated
features which are able to appreciate the aesthetic characteristics of singing voice
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for music content processing and analysis. For example, vibrato motivated acous-
tic features are used to identify singers in [1],[11]. Beside vibrato, harmonic is
also a useful feature for SingerID. In fact, harmonics of soprano singer’s voice
are widely spaced in the spectrum in contrast to that of bass singer’s voice [8].
Hence, harmonic spectrum is useful to differentiate between low and high pitch
singers.

One of the basic elements of music is timbre or color. Timbre is the quality of
sound which allows human ears to distinguish among different types of sounds
[15]. Cleveland [3] states that an individual singer has a characteristic timbre
that is a function of the laryngeal source and vocal tract resonances. Timbre is
assumed to be invariant with an individual singer. On the other hand, Erickson
[6] states that the traditional concept of an invariant timbre associated with
a singer is inaccurate and that vocal timbre must be conceptualized in terms
of transformations in perceived quality that occur across an individual singer’s
range and/or registers. In general, these studies suggest that timbre is invari-
ant with an individual singer or there is a particular range of timbre quality
associated to an individual singer. In this paper, we would like to study the use
of timbre based features in SingerID task. Poli [9] measured the timbre quality
from spectral envelope of MFCC features to identify singers. In [17], timber is
characterized by the harmonic lines of the harmonic sound. In this paper, we
propose determining timbre by the harmonic content of a sound and the dynamic
characteristics of it such as vibrato and attack-decay envelope [15].

The rest of this paper is organized as follows. In section 2, we present the
methods for vocal detection. In section 3, we study perceptually motivated
acoustic features and their characteristics. In section 4, we describe the popular
song database, experiment setup and results. Finally, we conclude our study in
section 5.

2 Vocal Detection

We extract vocal segments from songs. Subband based Log Frequency Power
Coefficient (LFPC) [10] is used as acoustic features. We train hidden Markov
models (HMM) as vocal and nonvocal acoustic models to detect vocal segments.
Vocal detection errors can affect SingerID performance. To reduce the vocal
detection error, we formulate the vocal detection as a hypothesis test [12] based
on confidence score. In this way, we only retain vocal segments, with which the
acoustic models have high confidence. Vocal segments with confidence measure
which are higher than a predetermined threshold are accepted for the SingerID
experiment.

3 Acoustic Features

We next study several perceptually motivated features, namely harmonic, vi-
brato and timber features, to characterize song segments. We propose to use
subband filters on octave frequency scale in formulating these acoustic features.
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3.1 Harmonic

Sopranos have higher fundamental frequency than bass singers. Hence, harmon-
ics of soprano’s voice is widely spaced in contrast to that of bass singing. Upper
panels of Fig. 1 (a) and (b) show the examples of harmonic spectrum of soprano
and bass singing respectively. To capture this information, we implement the
harmonic filters with the centre frequencies located at each of the musical notes
as in middle panel of Fig. 1 (a) and (b). The list of the frequencies of the musical
notes can be found in [7]. Subband filters span up to 8 octaves (16 kHz). Each
octave has 12 subbands and there are 96 subbands in total. Output of subband
filtering is given in lower panels of Fig. 1. For soprano, lower panel of Fig. 1 (a)
shows widely spaced peaks. However, the peaks are narrowly spaced in lower
panel of Fig. 1 (b) for bass singers.

Fig. 1. Harmonics and harmonic filtering

3.2 Vibrato

Vibrato is a periodic, rather sinusoidal, modulation of pitch and amplitude of a
musical tone [14]. Vocal vibrato can be seen as a function of the style of singing
associated to a particular singer [11].

Vibrato is characterized by two parameters: the extent or excursion and the
rate as illustrated in Fig. 2 (a). Female singers tend to have a slightly faster mean
vibrato rate than male singers [4]. Vibrato excursions occurring at the tone D6
for three different singers are shown in Fig. 2 (a), (b) and (c). In Fig. 2(c),
vibrato excursions to the up and down from the note is balanced. However,
unbalanced vibrato excursion can be seen in Fig. 2 (a) and (b). According to
[2], such irregular vibrato excursions are very common in most of the tones. In
[5], vibrato extent is categorized into two different types, ’wobble’ and ’bleat’.
Wobble has a wider pitch fluctuation and slower rate of vibrato as in Singer-A.
However, bleat has a narrower pitch fluctuation and faster rate as in Singer-C.
Hence, the information such as 1) regularity or irregularity in vibrato excursion,
2) two different vibrato types of ’wobble’ and ’bleat’, and 3) vibrato rate is
integrated into acoustic feature.
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Fig. 2. Vibrato waveforms of 3 singers at note D6, 1174.6Hz

As a result of the modulation of pitch, the frequencies of all the overtones
vary regularly and in sync with the pitch frequency modulation [13]. Therefore,
we implement the subband filters with the center frequencies located at each of
the musical notes to characterize the vibrato. The list of the frequencies of the
musical notes can be found in [7]. Due to the fact that singing voice contains
high frequency harmonics [16], our subband filters span up to 8 octaves (16kHz).
Our subband filters are implemented with a bandwidth of ±1.5 semitone from
each note since vibrato extent can increase more than ±1 semitone when a singer
raises his/her vocal loudness [13]. We employ cascaded subband filters (referred
to as vibrato filter) [11] to capture vibrato information from acoustic signal.

In Fig. 4, the upper panel shows spectrum partial. The middle panel presents
the frequency response of the vibrato filter. The lower panel demonstrates the
instantaneous amplitude output of the vibrato filter. With the output from the
vibrato filter, we are able to track the local maxima to derive the vibrato ex-
tent [11]. We illustrate the vibrato filter [11] and subband outputs in Fig. 3 and
Fig. 4. The filter has two cascaded layers of subbands. The first layer has over-
lapped trapezoidal filters. The second layer has 5 non-overlapped rectangular
filters of equal bandwidths for each trapezoidal subband. Trapezoidal filters are
tapered between ±0.5 semitone to ±1.5 semitone. The vibrato fluctuations are
observed by tracking the local maxima in the instantaneous amplitude output
of the subbands in the second layer as shown in the lower panel of Fig. 4. Local
maxima indicate the position of the vibrato. The distance between the center
frequency of the corresponding filter and the local maxima informs the vibrato
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Fig. 3. A bank of cascaded subband filters

Fig. 4. Vibrato fluctuations and vibrato filtering observed at the note G#5, 830.6Hz.
(a) vibrato fluctuates left (b) no fluctuation (c) vibrato fluctuates right.

extent. The tapered and overlapped trapezoidal filters in the first layer allow
vibrato fluctuations of adjacent notes observed at the output of the subbands in
the second layer to be ’continuous’. The vibrato filter captures irregularities or
regularities in vibrato excursion and ’wobble’ or ’bleat’ vibrato types.

3.3 Timbre

Sounds may be generally characterized by pitch, loudness and quality. For sounds
that have the same pitch and loudness, sound quality or timbre describes the
characteristics which allow human ears to distinguish among them. Timbre is a
general term for the distinguishable characteristics of a tone. Timbre is mainly
determined by the harmonic content of a sound and the dynamic characteris-
tics of the sound such as vibrato and attack-decay envelope of the sound [15].
Tone quality or timbre seems most strongly related to the physical phenomena of
unfolding partials in the spectrum of a sound or the spectral envelope which dis-
tinguishes between two different instruments playing the same note at the same
amplitude. The spectral envelop consists of the basis for our tonal judgement
[18]. Attack-decay processes of two different singers are shown in Fig. 5 (a) and
(b). Singer-1’s voice takes more time to develop to its peak than that of Singer-2.
And, the decay process of Singer-1 is more gradual than that of Singer-2.

Studies found that it takes a duration of about 60ms to recognize the timbre
of a tone. If a tone is shorter than 4ms, it is perceived as an atonal click [15].
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Fig. 5. Attack-decay envelopes

3.4 Cepstral Coefficient Computation

We first divide a music signal into frames of 20ms with 13ms overlapping and
apply Hamming window to each frame to minimize signal discontinuities at the
end of each frame. Each audio frame is passed through harmonic filters for har-
monic content analysis to derive log energy of each band. Finally, we compute
a total of 13 Octave Frequency Cepstral Coefficients (OFCChar) from the log
energies using Discrete Cosine Transform. We then replace the harmonic filters
with vibrato filters to compute the OFCCvib coefficients. To account for timbre
characteristics, output log energy of vibrato filter is augmented by that of har-
monic and Mel-scale filters. Then, we compute 13 TimBre Cepstral Coefficients
(TBCC). We augment the feature coefficients with time derivatives or delta pa-
rameters from two neighbouring frames to capture temporal information. For
example, delta parameters take care of vibrato rate and attack-decay envelope
in OFCCvib and TBCC respectively.

3.5 Formulating Singer Identification as Verification

Traditionally, singer identification system is formulated as a pattern classifica-
tion problem,in which we find singer model that has the highest likelihood score.
The likelihood score measures the similarity between model and test samples.
However, it does not take discriminative information between singers into ac-
counts. Here, we propose formulating the identification as a verification task [19]
in which we use likelihood ratio instead of likelihood score for decision making.
Let O be the sequence of input feature vectors representing a vocal segment from
a song of target singer group, otherwise known as the observation. Following the
statistical hypothesis test theory, we define two hypothesis. The true hypothesis
H1 is that O belongs to the target singer model λm. And the false hypothesis
H0 is that O belongs to non-target model λk. We have the following decision
rule.

p(H1)
Accept

≥

<

Reject
p(H0) (1)

When it is applied in singer verification, equation (1) can be rewritten in the
form of posterior probability:
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p(λm|O)
Accept

≥

<

Reject
p(λk|O) (2)

where p(λm|O) is the posterior probability of target singer model λm given the
song segment O. We apply Bayesian decision rule, equation (2) can be formulated
as follows.

p(O|λm)P (λm)
Accept

≥

<

Reject
p(O|λk)P (λk) (3)

where P (λm) and P (λk) are the priori probabilities of O to be target singer group
or non-target singer group respectively. In our system, P (λm) and , P (λk) are
assumed equiprobable. Equation (3) can be rewritten in terms of likelihood ratio
as in equation (4).

p(O|λm)
p(O|λk)

Accept
≥

<

Reject

P (λk)
P (λm)

(4)

In this way, we use a likelihood ratio instead of a likelihood score for decision
making.

Now, let us re-examine equation (4) by considering the total cost of a singer
identification system. The total cost is defined as follows [19]:

C = Cλk|λm .P (λm).p(λk|λm) + Cλm|λk .P (λk).p(λm|λk) (5)

where Cλk|λm and Cλm|λk are the costs of a false rejection and a false acceptance
respectively. p(λk|λm) and p(λm|λk) are the probabilities of a false rejection and
a false acceptance yielded by the system. Assuming the costs of Cλk|λm and
Cλm|λk are the same, equation (5) reflects the error rate averaged over the test
database. We find that the decision strategy of equation (4) leads to minimization
of this total cost in equation (5).

4 Experiments and Discussion

We compile a database of 84 popular songs from commercially available CD
albums of 12 solo English and Chinese singers. The titles of the albums are
shown in Table 1. A total of 7 songs are extracted from each album. Four songs
of each singer are allocated to TrainDB and the remaining 3 songs to TestDB.
Vocal and nonvocal segments of each song are manually annotated to provide
the ground truth. The sampling frequency of the song is 44.1 kHz and 16 bit per
samples. We define error rate (ER) as the number of errors divided by the total
number of test trials.

We first segment a song into 1 second fixed-length segments. Then, each seg-
ment is classified as vocal or nonvocal class using the method mentioned in
section 2. The average vocal/nonvocal classification error rate of vocal detection
system is reported at 8.7%.
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Table 1. Singers and Album Titles for 84 Popular Songs

Number Singer Album
1 Michael Bolton Vintage
2 Richard Marx My own Best Enemy
3 Adu Tian Hei
4 Ou De Yang Ocean
5 Jay Chou Qi Li Xiang
6 Kathryn Williams Relations
7 Agnetha Faltskog My colouring book
8 Jennifer Lopez J. Lo
9 Shania Twain Come on over
10 Gabrielle Play to win
11 Madonna Like a virgin
12 Dido Life for rent

Using the vocal segments from vocal detector, SingerID experiments are fur-
ther conducted. We use the continuous density HMM with four states and two
Gaussian mixtures per state for all HMM models in our experiments. Using the
TrainDB, we train a singer model, λs, for each of 12 singers. To identify singer
for a vocal segment O, we estimate the likelihood score of O being generated
by each of 12 singer models. The model with the highest likelihood suggests the
singer identity. We conduct experiments to compare the SingerID performance
of five feature types, namely, TBCC,OFCCvib, OFCChar, MFCC, and LPCC.
Window size is 20ms and frame shift is 7ms in all tests.

The number of misidentified singing voice errors for 12 singers are listed in
Fig. 6. Each feature type is extracted from 1s segments and there are 5089

Fig. 6. Number of misidentified test samples on TestDB by 5 feature types
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total segments in TestDB. From Fig. 6, we observed that the performance of
the singer identification depends on the effect of song content and the singer. In
general, the same gender of singers can be confused and the singers with light
instrumental background achieve higher accuracy than the singers with strong
instrumental background.The minimum error rate of 0.48% (Kathryn Williams)
and the maximum error rate of 28.85% (Ou De Yang) are obtained based on the
characteristics of the songs.

Table 2. Error rate (ER%) of SingerID on TestDB

TBCC OFCCvib OFCChar MFCC LPCC
12.2 12.8 13.6 12.9 21.9

Table 2 shows that the TBCC feature, with an average error rate of 12.2%,
outperforms all other features. It is observed that timbre based features capture
the singer characteristics well by 5% and 10.3% relative error reduction over
OFCCvib and OFCChar features. Furthermore, TBCC feature perform well by
5.4% to 44.3% relative error reduction over traditional features such as MFCC
and LPCC. Perceptual based acoustic features (TBCC, OFCCvib and OFCChar)
in general give better results than the traditional features.

A false alarm rate (FAR) is calculated to be aware of the discriminating ability
of our singer models. FAR is defined as the number of false alarms to singer
divided by the singer’s total negative test trials. All the negative test samples
for each singer are collected and so a negative sample for one singer can be a
negative sample for another singer in two independent tests. From the 5089 test

Fig. 7. Number of false alarms on TestDB by five feature types
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Table 3. Average error on TestDB by five feature types

TBCC OFCCvib OFCChar MFCC LPCC
1.5 1.78 2.15 2.13 2.72

Table 4. Error rate (ER%) on TestDB with different window sizes of TBCC

Window size (ms) ER (%)
59 12.1
60 15.3
61 15
63 11.9
64 15.4
65 13.6

samples, we come up with 55979 negative samples in total. The accumulated
counts of false alarms are illustrated in Fig. 7.

The performance of TBCC feature consistently achieve better than the tradi-
tional spectral features in terms of both error rate and false alarm rate in Table 2
and Table 3. As mentioned in section 3.3, duration of about 60ms is necessary
to recognize the timbre of tone. Hence, the error rate of 12.2% may not give
the optimal performance for TBCC since window size is only 20ms. We further
conduct several experiments with TBCC feature of different window sizes, with
fixed frame shift of 7ms in all tests. In Table 4, the results show that performance
peaks when window size is 63ms, giving the best error rate of 11.9%. It is ob-
served that timbre based features capture the singer characteristics well by 0.9%
and 1.7% (or 7% and 12.5% relative) error reduction over OFCCvib (reported
earlier in [11]) and OFCChar features respectively. Furthermore, TBCC feature
perform well by 5.4% to 44.3% relative error reduction over traditional features
such as MFCC and LPCC. We believe that a window size of around 60ms is
suitable to extract timbre characteristics from a music signal.

Both vocal and instrumental sounds have musical characteristics such as har-
monic, vibrato, and timbre. This gives rise to a question as to whether the three
features: TBCC, OFCCvib and OFCChar, capture these musical characteristics
from either vocal or instrumental sound. To look into this, we conduct SingerID
experiments using manually annotated nonvocal segments. SingerID system per-
formance using a) vocal segments, b) nonvocal segments are presented in Table 5.

Table 5. Average error rates using (a) vocal segments and (b) nonvocal segments

Features Case (a) Case (b)
TBCC 12.2 60.1

OFCCvib 12.8 66.7
OFCChar 13.6 60.6
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Without surprise, in the presence of vocal timbre, vibrato and harmonic, the
three features work the best as in Case (a). With absence of vocal timbre, vibrato
and harmonic in Case (b), the error rate increases. This is because the singing
voice usually stands out of the background musical accompaniments [13] and the
three features are able to capture musical characteristics from vocal rather than
from background instruments.

Inspired by speaker verification research [19], we conduct further singer ver-
ification experiments using likelihood ratio as in equation (5). We use TBCC
feature with 20ms window size in this experiment. As mentioned above, we
train each singer model for each of 12 singers. In addition, we train a Universal
Background Model to represent non-target singer group using UBM-DB. During
testing, each segment is evaluated against all the 12 models in the classifier, and
is assigned to the model that gives the best match, as formulated in equation (4).
Results in Table 6 show that the performance is improved by using likelihood
ratio in a verification hypothesis test.

Table 6. Average Error Rate (ER) on TestDB with and without verification strategies

Method ER(%)
without verification strategies 12.2

with verification strategies 11.4

In Fig. 8, we present the ER curve of the singer identification system after
applying verification strategies. It is observed that the equal error rate (EER) is
at 8.9%. It is worth noting that, with verification strategies, we have obtained
average error rate of 11.4% (see Table 6) which is very close to the true opti-
mum. With that, we believe that the proposed features and decision strategy
are reliably effective.

Fig. 8. Equal Error Rate (EER%) of singer identification using likelihood ratio scores
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5 Conclusions

We have presented an approach for singer identification of popular songs. The
proposed approach explores perceptually motivated timbre characteristics for
SingerID. The main contributions of this paper are summarized as follows: 1)
we propose using several perceptually motivated features using harmonic, vibrato
and timbre information to represent the singer’s characteristics. 2) With these
features, we found that there is a strong correlation between singer characteristics
and system performance. 3) We successfully apply speaker verification techniques
into singer identification to achieve better system performance. We conclude
that perceptually motivated features especially timbre features are effective in
improving system performance.
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