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Abstract. Seeking to identify the constituent parts of the multidimen-
sional auditory attribute that musicians know as timbre, music psychol-
ogists have made extensive use of multidimensional scaling (mds), a
statistical technique for visualising the geometric spaces implied by per-
ceived dissimilarity. mds is also well known in the machine learning com-
munity, where it is used as a basic technique for dimensionality reduction.
We adapt a nonlinear variant of mds that is popular in machine learn-
ing, Isomap, for use in analysing psychological data and re-analyse three
earlier experiments on human perception of timbre. Isomap is designed
to eliminate undesirable nonlinearities in the input data in order to re-
duce the overall dimensionality; our results show that it succeeds in these
goals for timbre spaces, compressing the output onto well-known dimen-
sions of timbre and highlighting the challenges inherent in quantifying
differences in spectral shape.

1 Introduction

As any computer musician knows, timbre is one of the most important compo-
sitional parameters, and yet it remains one of the most under-theorised. Part
of the reason for the relative lack of theory may be due to the fact that, unlike
pitch, timbre is a multidimensional auditory attribute, and it it is difficult to
draw general conclusions about timbre as a whole without first identifying its
constituent parts. Nonetheless, there have been a number of attempts to uncover
the underlying dimensionality of timbre space over the past few decades, most
based on perceptual experiments with synthesised and recorded tones. Early ex-
periments with synthetic tones identified spectral centroid and attack time as
primary components of timbre, in addition, at times, to a third dimension that
was more difficult to interpret and dependent on the stimulus set (Grey 1977;
Grey and Gordon 1978). Later studies with more sophisticated models came to
similar conclusions, and suggested that the third component might be a mea-
sure of irregularity in the spectral envelope (Krumhansl 1989) or spectral flux
(McAdams et al. 1995). A recent confirmatory study has verified that spectral
centroid, attack time, and spectral irregularity are indeed recovered, whereas
spectral flux is not (Caclin et al. 2005).

R. Kronland-Martinet, S. Ystad, and K. Jensen (Eds.): CMMR 2007, LNCS 4969, pp. 181–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



182 J.A. Burgoyne and S. McAdams

All of these studies are based on a statistical technique known as multidi-
mensional scaling (mds) (Torgerson 1958). The basic idea of mds is to take the
set of proximities between all members of some set of data points, e.g., sam-
ple timbres, and to model them as distances in a Euclidean space of as few
dimensions as possible. In the context of timbre, these proximities are usually
taken from psychological experiments in which human subjects have rated their
perception of the (dis)similarity between timbre pairs. The trouble with mds

in this context is that its classical form was designed to interpret a single set
of dissimilarities among items, not the average over all subjects of an exper-
iment. The first robust solution to this problem was the indscal algorithm
(Carroll and Chang 1970), which models a special weight on each dimension for
each subject in the experiment in order to better fit model distances to the set
of empirical dissimilarities. The more sophisticated clascal algorithm reduces
the number of parameters in indscal by modelling weights not for individ-
ual subjects but for a smaller number of aggregate subject groups, called latent
classes (Winsberg and De Soete 1993). clascal and its variants are the stan-
dard techniques for analysing timbre spaces today.

There is another problem with these techniques, however: being linear, they
consider all distances estimated by the human subjects to be equally reliable and
of equal relative scale. Although some relatively straightforward extensions to
mds can treat the latter problem, e.g., conscal (Winsberg and De Soete 1997),
the former requires more aggressive modifications. One such modification, known
as Isomap, replaces large distances in the original distance matrices with so-called
geodesic distances along a hypothetical manifold (Tennenbaum et al. 2000). Pre-
vious work with Isomap has demonstrated that it and its relatives can uncover
meaningful musical relationships that traditional linear mds will always miss
(Burgoyne and Saul 2005).

This paper combines the clascal and Isomap models to re-analyse the
data from three major studies of timbre: Grey 1977, Grey and Gordon 1978, and
McAdams et al. 1995. Section 2 provides a more detailed explanation of these
algorithms and best practises for interpreting their results. Section 3 presents the
results of our new scaling and compares them to the original studies. Section 4
concludes with suggestions for future applications of nonlinear scaling to the
study of musical timbre.

2 CLASCAL and Isomap

2.1 CLASCAL

Traditional mds was designed to handle a single set of pairwise proximities only.
A number of models have been presented to adapt mds for multiple-subject
experiments, of which the most important for studying timbre has been clas-

cal (Winsberg and De Soete 1993). The clascal model seeks to minimise the
approximation error in the following equation:
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dijk ≈
[

R∑
r=1

wC(i),r(xjr − xkr)2
]1/2

, (1)

where dijk is the dissimilarity rating that subject i assigned to stimulus pair
(j, k), R is the number of dimensions in the output set, wC(i),r is a special weight
on dimension r for the so-called latent class C(i) to which clascal has assigned
subject i, and xjr and xkr are the co-ordinates along dimension r for stimuli j and
k. Latent classes are meant to represent groups of subjects who pursue similar
rating strategies. The number of latent classes used is a compromise between
over-parametrisation, e.g., the indscal model, which assigns each subject to
its own class, and over-generalisation, e.g., ignoring differences between subjects
by taking the average over all dissimilarity matrices. A Monte Carlo likelihood-
ratio technique is used to determine the optimal number of classes (Hope 1968;
Aitkin et al. 1981). The class weights can be interpreted as the rating strategies
used by each class: relatively high weights for a particular dimension suggest that
members of the class use that dimension more than others when distinguishing
timbres.

Another potential problem with traditional mds is that it assumes all of the
variance in a data set can be explained by dimensions common to all stimuli. This
assumption does not always hold for timbre: many timbres include instrument-
specific components such as the sound of the returning hopper in a harpsichord.
A more sophisticated version of clascal separates these components, known
as specificities, using the following model:

dijk ≈
[

R∑
r=1

wC(i),r(xjr − xkr)2 + vC(i)(sj + sk)

]1/2

, (2)

where sj and sk are the specificities for stimuli j and k and vC(i) represents
the weight subjects in class C(i) give to specificities when distinguishing timbres
(Winsberg and Carroll 1989; McAdams et al. 1995).

2.2 Isomap

Isomap arose as a solution to the dimensionality reduction problem for data
sets like the famous ‘Swiss roll’ pictured in Fig. 1 (Tennenbaum et al. 2000).
Looking at the plot, it is obvious to a human that the data are arranged on a
two-dimensional plane that has been coiled and presented in three dimensions.
This fact is not obvious to traditional mds, which strives to preserve every
pairwise distance in the set, including those between the ends of the roll and
the inner or outer loops. The ingenious solution in Isomap is to throw away all
pairwise distances in the set except those at the local level, i.e., those in a small
region immediately surrounding each point in the data set. These regions can
be selected as a fixed number k of the nearest neighbours to each point in the
data set or as those points that fall within a sphere of fixed radius ε around
each point. The other distances are then recomputed using an all-pairs shortest-
path algorithm, yielding an approximation of the so-called geodesic distances, or
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(a) Embedded in 3 dimensions.

(b) Unrolled in 2 dimensions.

Fig. 1. The ‘Swiss roll’ data set. On the left, the data is presented in its original form.
On the right, the data is presented as it should be unrolled for human interpretation.
Traditional mds can never arrive at this solution, however, because it seeks to preserve
the distances between the ends of the roll and the inner/outer loops.
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distances in the lower-dimensional form. After these approximate distances are
computed, traditional mds is applied.

Like many algorithms based on nearest neighbours, Isomap can be improved
by incorporating variants of the relative neighbourhood graph, e.g., the Gabriel
graph (Gabriel and Sokal 1969; Jaromczyk and Toussaint 1992). The Gabriel
graph retains the pairwise distance dab between points a and b if and only if
there is no point c such that d2

ac + d2
cb < d2

ab. Interpreted geometrically, the
Gabriel graph retains the pairwise distance between two points if and only if
the minimum-volume hypersphere connecting them, i.e, the diameter sphere, is
empty. The Gabriel graph of a set of points is a superset of the minimum span-
ning tree, and thus, unlike the graphs based on fixed k or ε in traditional Isomap,
is guaranteed to be connected. It is nonparametric and robust to variations in
density throughout the observed space. Because of these desirable properties,
all of our experiments with Isomap retained the Gabriel neighbours rather than
fixed neighbourhoods specified in the original algorithm.

At first glance, the Swiss roll appears to be a fundamentally different problem
than that of estimating timbre spaces. There is little reason to believe that
human subjects would willfully twist their ratings of the similarities between
timbre pairs into more dimensions than are already present. The larger message
of Isomap, however, is that unless a space is perfectly linear, large distances in
a scaling model can mask important structures in the data. It seems prudent to
check for such structures in psychological data, and because Isomap is based on
classical mds, unlike a number of other nonlinear scaling techniques, it lends itself
naturally to combination with clascal. Each subject’s dissimilarity matrix is
processed according to the Isomap algorithm until the final mds step. After this
preprocessing is complete, the new dissimilarity matrices are fed to clascal.

3 Experiments and Results

As stated earlier, rather than performing a new experiment, we used the data
from three earlier experiments to evaluate the effects of Isomap processing. Re-
sults based on (1) are presented first, followed by a discussion of the changes to
the output spaces after adding specificities to the model as per (2). In interpreting
the results, we computed the acoustical features proposed in Peeters et al. 2000
for each timbre stimulus and studied the Pearson correlation coefficients of these
features with the dimensions output from clascal.

3.1 Grey 1977

Although the complete experimental results from the Grey 1977 are, the sound
stimuli used for the experiments are still available. These stimuli comprise elec-
tronically resynthesised imitations of tape recordings of pitch E�4 (311Hz) played
on two different oboes, an English horn, a bassoon, an E� clarinet, a bass clar-
inet, a flute, two alto saxophone sounds (one played piano and one played mezzo-
forte), a soprano saxophone, a trumpet, a French horn, a muted trombone, and
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three cello sounds (normal bowing, muted sul tasto, and sul ponticello). These
sounds were then normalised to a consistent perceived loudness, pitch, and dura-
tion based on a separate perceptual experiment. We performed a study with 22
new subjects, all professional musicians, using these stimuli, asking each subject
to rate the dissimilarity between each of the 120 pairs of stimuli on a continuous
scale, which was later converted to range from 0 to 1 for data analysis.

The optimal clascal model prior to Isomap processing contains two latent
classes and three dimensions. In descending order of prominence, the dimensions
correlate with spectral centroid (r = 0.90), spectral slope (r = 0.79), and log
attack time (r = 0.71) for the stimuli. Both latent classes weight these dimensions
fairly evenly (see Fig. 2a); the primary difference between the classes appears to
be that subjects in Class 1 (9 subjects) made use of a wider range of the rating
scale than those in Class 2 (13 subjects). The co-ordinates of each stimulus are
listed for reference in Table 1, and Fig. 3a presents a plot of the stimuli positioned
in the space. In this plot and all future plots, points are connected according
to their minimum spanning tree, which includes all pairs of nearest neighbours;
points in the plot that appear to be close together but are not connected by a
dark line are in fact farther from each other than they appear.

After Isomap processing, the optimal clascal model contains three latent
classes and four dimensions. Again in descending order of prominence, these
dimensions correlate with a combination of spectral centroid (r = 0.91) and
spectral flux (r = 0.80), spectral spread (r = −0.74), log attack time (r =
0.86), and – curiously – spectral centroid again (r = 0.76). Note that the first
two dimensions correlate highly with the first two dimensions prior to Isomap
processing (r = 0.84 and r = 0.71). Subjects in Class 1 (11 subjects) appear
to have used a rating strategy emphasising spectral centroid and log attack
time, whereas subjects in Class 3 (10 subjects) weighted the four dimensions
more evenly. Class 2 contains a single subject who weighted the first dimension
relatively less and used more of the scale overall than those in Class 3. The raw
and relative weights are available in Fig. 2b. A full set of co-ordinates appears
in Table 1 and a plot of the leading three dimensions of the space is presented
in Fig. 3b. Despite the extra dimension and some mild changes to the minimum
spanning tree with respect to the saxophones and oboes, the overall structure is
similar to the space prior to Isomap processing.

The clascal technique is more sophisticated than the mds techniques that
were available to Grey originally, and so some differences in the output dimen-
sions are to be expected. The overall structure of our timbre space, however, is
similar to the original published space both before and after Isomap processing.

3.2 Grey and Gordon 1978

Like Grey 1977, the complete experimental results of Grey and Gordon 1978 are
no longer available, but we were able to locate the sound stimuli used. These
stimuli were mostly the same as the Grey 1977 stimuli, but for four pairs of
instruments – (a) oboe 1 and bass clarinet, (b) bassoon and French horn, (c)
cello sul tasto and normal cello, and (d) muted trombone and trumpet) – the
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Class 1 (N = 11)

Class 2 (N = 1)

Class 3 (N = 10)

0.41
(65%)

0.22
(35%)

1.63
(46%)

1.90
(54%)

0.96
(52%)

0.88
(48%)

spectral centroid specificities

(a) Before Isomap

Class 1 (N = 11)

Class 2 (N = 1)

Class 3 (N = 10)

0.44
(39%)

0.13
(11%)

0.41
(36%)

0.16
(14%)

1.38
(19%)

2.17
(30%)

1.79
(25%)

1.87
(26%)

1.18
(32%)

0.70
(19%)

0.80
(22%)

0.97
(27%)

centroid + flux spectral spread attack time spectral centroid

(b) After Isomap

Fig. 2. Raw and relative weights on dimensions for latent classes of subjects using Grey
1977 stimuli. Although the overall listening strategies (relative weights) are similar
before Isomap, the raw weights reveal that subjects in Class 1 used a wider range of
the rating scale than subjects in Class 2.

spectral envelopes were exchanged during synthesis. The purpose of these ex-
changes was to test the effect of changes in spectral envelope on timbre percep-
tion by comparing the mds space resulting from these timbres to that of the
original space. Again, we conducted a new experiment using the same 22 sub-
jects on these stimuli, asking them to rate the dissimilarity between all 120 pairs
on a continuous scale.

Before Isomap processing, the optimal clascal model contains three classes
and two dimensions. Like the leading two dimensions of the Grey 1977 space,
the dimensions correlate with spectral centroid (r = 0.93) and spectral spread
(r = −0.67). All three latent classes suggest fairly even rating strategies, al-
though Class 1 (5 subjects) shows a slight preference for spectral spread and
Class 2 (9 subjects) shows a slight preference for spectral centroid relative to
Class 3 (8 subjects), which distributes the weights most evenly (see Fig. 4a). All
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(a) Before Isomap

(b) After Isomap

Fig. 3. Grey 1977 timbre spaces. Axes are labelled with their acoustic correlates, and
to aid visualisation, points are connected according to the minimum spanning tree in
the common clascal spaces. The two structures are similar, but the space groups
more tightly after Isomap.
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Class 1 (N = 5)

Class 2 (N = 9)

Class 3 (N = 8)

1.28
(47%)

1.47
(53%)

0.74
(56%)

0.58
(44%)

0.97
(50%)

0.95
(50%)

spectral centroid spectral spread

(a) Before Isomap

(b) After Isomap

Fig. 4. Raw and relative weights on dimensions for latent classes of subjects using
Grey and Gordon 1978 stimuli

co-ordinates are listed in Table 2 for reference and a plot of the output space
appears in Fig. 5a.

Before Isomap processing, clascal suggests a space with 2 classes and 3 di-
mensions. Consistent with the dimensions recovered for the full set of 88 subjects,
the first two dimensions correlate with log attack time (r = −0.82), spectral cen-
troid (r = −0.89); the third dimension, however, correlated best with spectral
spread (r = 0.73) rather than spectral flux (r = 0.33) as in the original paper.
The primary difference between Class 1 (14 subjects) and Class 2 (10 subjects) is
scale, Class 2 making fuller use of the scale than Class 1, although Class 1 shows
a slight preference for log attack time and Class 2 shows a slight preference for
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(a) Before Isomap

(b) After Isomap

Fig. 5. Grey and Gordon 1978 timbre spaces. Axes are labelled with their acoustic cor-
relates, and to aid visualisation, points are connected according to the minimum span-
ning trees in their common clascal spaces. In the post-Isomap space, the minimum
spanning tree incorporates distance information from the unplotted third dimension,
which is why it crosses itself.
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Class 1 (N = 14)

Class 2 (N = 10)

0.92
(39%)

0.77
(32%)

0.68
(29%)

1.08
(30%)

1.23
(34%)

1.32
(36%)

attack time spectral centroid spectral spread

(a) Before Isomap

Class 1 (N = 3)

Class 2 (N = 10)

Class 3 (N = 11)

1.23
(21%)

1.35
(23%)

1.56
(27%)

1.74
(30%)

0.62
(30%)

0.59
(29%)

0.39
(19%)

0.45
(22%)

1.15
(28%)

1.06
(26%)

1.04
(26%)

0.81
(20%)

attack time spectral centroid spectral spread centroid + spread

(b) After Isomap

Fig. 6. Raw and relative weights on dimensions for latent classes of subjects using
McAdams et al. 1995 stimuli

spectral spread in their respective rating strategies (see Fig. 6a). A full set of
co-ordinates appears in Table 3 and the space is plotted in three dimensions in
Fig. 7a.

After Isomap processing, the optimal clascal model comprises three classes
and four dimensions. The first three dimensions correlate with the same acoustic
features as those of the pre-Isomap space, log attack time (r = −0.81), spectral
centroid (r = −0.68), and spectral spread (r = 0.82); the fourth dimension
appears to be some combination of spectral centroid (r = −0.69) and spectral
spread (r = 0.78). The first and third dimensions of the spaces correlate highly
with each other (r = 0.97 and r = 0.77), but it is the fourth dimension after
Isomap that correlates with the second dimension before Isomap (r = 0.81).
Class 1 (3 subjects) shows a slight preference for Dimensions 3 and 4, Class 2
(10 subjects) shows a slight preference for Dimensions 1 and 2, and Class 3 (11
subjects) weights all four dimensions evenly (see Fig. 6b). Table 3 contains a list
of the exact co-ordinates for each stimulus and Fig. 7b provides a projection of
this space into three dimensions.
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(a) Before Isomap

(b) After Isomap

Fig. 7. McAdams et al. 1995 timbre space before Isomap. Axes are labelled with their
acoustic correlates, and to aid visualisation, points are connected according to the
minimum spanning trees in their common clascal spaces.
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3.3 Specificities

As stated earlier, all of the above models were derived without allowing for
specificities, i.e, using (1) rather than (2). Before Isomap processing, the speci-
ficities make little difference. An analogous Monte Carlo likelihood-ratio test
to the one used for determining the optimal number of classes prefers models
without specificities for Grey and Gordon 1978 and McAdams et al. 1995. Al-
though a model with specificities is preferred for Grey 1977, the model structure
changes very little on account of them. The optimal model including specifici-
ties still contains two classes and three dimensions. All three respective pairs
of dimensions (with and without specificities) correlate highly with each other
(r = 0.89, r = 0.74, and r = 0.89), although after including specificities, the
second dimension correlates better with a psychoacoustical model for perceived
roughness (r = −0.77; see von Bismarck 1974) than it does with spectral spread.
Like the model without specificities, both latent classes weight the dimensions
fairly evenly; the difference between them is that Class 1 (7 subjects) incorpo-
rates specificities into its rating strategy whereas Class 2 (15 subjects) does not
(see Fig. 8). The output space, which is structurally almost identical to the space
without specificities, is presented in Fig. 9, and a complete co-ordinate listing
appears in Table 1.

Class 1 (N = 7)

Class 2 (N = 15)

1.00
(19%)

1.06
(20%)

1.17
(22%)

2.00
(38%)

1.00
(36%)

0.94
(34%)

0.83
(30%)

spectral centroid roughness attack time specificities

Fig. 8. Raw and relative weights for each latent class in Grey 1977 before Isomap
processing and including specificities

After Isomap processing, however, the Monte Carlo test prefers models with
specificities in all cases. Moreover, although the optimal number of latent classes
remains unchanged, the inclusion of specificities reduces the optimal number of
common dimensions to just one: spectral centroid for Grey 1977 (r = 0.83) and
Grey and Gordon 1978 (r = 0.91) and log attack time for McAdams et al. 1995
(r = −0.78). These single dimensions correlate highly with the leading di-
mensions in their respective spaces before and after Isomap, with and without
specificities; all other information has been pushed out into the specificity di-
mensions. It is impossible to visualise these models, unfortunately, although their
co-ordinate values are listed in their respective tables. The latent classes within
each of these models differ primarily in the relative weight they place on the
specificities (see Fig. 10).
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Fig. 9. Grey 1977 timbre space before Isomap and including specificities. Structurally,
it is nearly identical to the analogous space without specificities.

One can see from inspecting the specificity values in the co-ordinate
listings for all three spaces that it is difficult to interpret the precise mean-
ing of specificities. Higher values denote timbres that are heard as more
unique than others, but other than an informal analysis like that in
McAdams, Winsberg, Donnadieu, Soete, and Krimphoof 1995, there is no scien-
tific means to determine from our data what makes each timbre sound unique.
We do find, however, that certain specificity dimensions (vectors valued at zero
for all instruments but one) correlate at p < 0.01 with certain acoustic features,
e.g., the string sound in McAdams et al. 1995 with spectral flux (r = 0.75).
These correlations are undesirable but strictly dependent on the choice of stimu-
lus set; confirmatory studies with artificial timbres, e.g., Caclin et al. 2005, can
and should check for such correlations before conducting rating experiments.

4 Discussion and Future Work

4.1 Perceived Dimensions of Timbre

Consistent with previous studies, it is clear from all of the spaces presented
above that humans use log attack time and spectral centroid when distinguishing
between timbres. It is also clear that we use at least one other component,
which manifests itself in the above spaces as spectral shape (spectral slope,
spectral spread), perceived roughness, or specificities. Whenever specificities are
included in the models above, however, the spectral shape dimensions disappear.
This behaviour suggests that all of these spectral shape dimensions are poor
approximations of the elusive third component of timbre, so poor that in most
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Class 1 (N = 11)

Class 2 (N = 1)

Class 3 (N = 10)

0.41
(65%)

0.22
(35%)

1.63
(46%)

1.90
(54%)

0.96
(52%)

0.88
(48%)

spectral centroid specificities

(a) Grey 1977

Class 1 (N = 1)

Class 2 (N = 5)

Class 3 (N = 7)

Class 4 (N = 9)

1.60
(40%)

2.42
(60%)

0.58
(80%)

0.15
(20%)

0.54
(52%)

0.49
(48%)

1.29
(58%)

0.94
(42%)

spectral centroid specificities

(b) Grey and Gordon 1978

Class 1 (N = 7)

Class 2 (N = 9)

Class 3 (N = 8)

1.20
(43%)

1.58
(57%)

0.61
(54%)

0.52
(46%)

1.19
(57%)

0.90
(43%)

attack time specificities

(c) McAdams et al. 1995

Fig. 10. Raw and relative weights for each latent class after processing with Isomap
and including specificities in the model



A Meta-analysis of Timbre Perception 199

cases, it is statistically advantageous to avoid the approximation by reverting to
specificities. Specificities are a sort of null model in that they take up as much
unexplained variance as possible without making any assumptions about the
relationships among timbres.

Ultimately, these results should not be surprising. Practitioners of sound syn-
thesis are well aware of the trade-off between modelling a given spectral shape
precisely and keeping the number of parameters manageable, e.g., basic FM

synthesis produces a coarser approximation of a desired spectrum but requires
many fewer parameters than an additive synthesis model; subtractive synthe-
sis models would fall somewhere in between. In no case will a single parameter
provide a meaningful approximation. Moreover, interpolating between synthesis
parametrisation when replicating time-varying spectra can be quite challeng-
ing because the spaces involved are generally not Euclidean. It would be well
worth investigating whether the higher dimensions of timbre perception or the
specificities are ultimately correcting for problems with the assumption that it
is possible to represent timbre space as a Euclidean one, which is the default
assumption in clascal and its relatives.

4.2 Isomap Processing

Although Isomap was ultimately successful in reducing the output dimension-
ality, it was not able to do so without resorting to specificities. In the models
without specificities, Isomap increases the models’ degrees of freedom (the to-
tal number of free parameters accounting for all dimensions and classes) in the
Grey 1977 space from 50 to 71, in the Grey and Gordon 1978 space from 37 to
58, and in the McAdams et al. 1995 space from 56 to 79. Another disadvantage
of Isomap, before specificities are considered, is that it can yield dimensions
that are difficult to interpret. The Grey 1977 and McAdams et al. 1995 spaces
include duplicate spectral-centroid dimensions and the Grey and Gordon 1978
space includes the curious pseudo-specificity in its third dimension. Furthermore,
the correlation between dimensions pre- and post-Isomap can be surprising, as
discussed above for the McAdams et al. 1995 space. It is impossible to know
exactly what about the geometry of the timbres in this space causes these be-
haviours, but the geometric structures it uncovers are consistent with those of
the spaces before Isomap processing.

These observations would be a blacker mark against Isomap processing for
mds studies if Monte Carlo testing did not always prefer models with speci-
ficities. Fortunately, after the introduction of specificities, the Isomap-processed
spaces can reduce dimensionality greatly and become very easy to interpret. The
necessary degrees of freedom for an optimal fit reduce from 67 to 38 for Grey 1977
and from 56 to 42 for McAdams et al. 1995; for Grey and Gordon 1978, the nec-
essary degrees of freedom increase just slightly from 37 to 41. For each of the
timbre sets considered, the ideal output space consists of a single dimension cor-
relating with the leading dimensions of the pre-Isomap spaces. The trade-off for
this heavy degree of compression is the dispersion of remaining variance among
the specificities, which are difficult to interpret directly but, as discussed above,
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may be a statistical proxy for variations in spectral shape. A problem with this
severe reduction, however, is that it conceptualises timbre as unidimensional with
specificities, whereas many musicians feel that two to four dimensions already
lose much of the subtle richness of timbral experience available in the instrument
sounds tested.

In generating its geodesic distances, Isomap prefers small dissimilarities to
larger ones; by construction, dissimilarities in the transformed matrix are al-
ways greater than or equal to dissimilarities in the original matrix. We chose
this particular transformation because of its natural combination with the clas-

cal method and relative ease of computation. It is unclear exactly what such
a transformation is assuming about subjects’ rating strategies, however, other
than a larger trust in estimations of dissimilarity between relatively similar
timbres over estimations between relatively dissimilar timbres. One improve-
ment would be to incorporate methods such as maximum variance unfolding
(mvu) (Weinberger 2004; Weinberger and Saul 2006) that can emphasise par-
ticular sets of neighbouring stimulus pairs without requiring the recomputation
of other dissimilarities. Such methods could be extended to allow researchers
to focus not only on small dissimilarities in the matrix, but possibly on exclu-
sively mid-range dissimilarities or exclusively large dissimilarities as well, which
would allow studies to identify differing rating strategies for differing grades of
dissimilarity.

Geodesic distances are a means not an end: like mvu, Isomap seeks to identify
low-dimensional manifolds in high-dimensional structures. Curiously, an informal
analysis suggests that Isomap has no effect on dimensionality or the interpre-
tation of the dimensions when applied after clascal analysis, which suggests
that for our study, the primary value of Isomap was in eliminating complicated
nonlinearities in individual subjects’ rating strategies and reducing them to more
broadly used acoustic features such as log attack time or spectral centroid. Be-
cause the dimensions that disappear on account of Isomap processing all have to
do with spectral shape, it is reasonable to assume that many of these nonlinear-
ities are connected to spectral shape in some way. Further confirmatory studies
are warranted to explore exactly how Isomap (or its relatives) warp timbre dis-
similarity matrices.

5 Conclusion

Designed for uncovering the true dimensionality of Euclidean manifolds, Isomap
is also able to simplify the timbre spaces resulting from mds on empirical timbre
dissimilarity matrices. These simplifications are in one sense disappointing: they
collapse the spaces to a single shared dimension plus a set of instrument-specific
dimensions that are relatively difficult to interpret. These simplified spaces, how-
ever, confirm two known dimensional components of timbre, spectral centroid
and log attack time, and highlight an important direction for future work on
the perception of spectral shape. More generally, the success of Isomap in this
domain should encourage all researchers using mds models to explore how pre-
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processing dissimilarity matrices before mds could be valuable and, in particular,
how Isomap preprocessing could be tailored to their needs.
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