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Abstract. Studies in crossmodal perception often use very simplified auditory 
and visual contexts. While these studies have been theoretically valuable, it is 
sometimes difficult to see how the findings can be ecologically valid or practi-
cally valuable. This study hypothesizes that a musical parameter (tempo) may 
affect the perception of a human movement quality (speed) and finds that al-
though there are clear limitations, this may be a promising first step towards 
widening both the contexts in which cross-modal effects are studied and the ap-
plication areas in which the findings can be used. 

1   Introduction 

Three intriguing occurrences—a misunderstood word, a talking puppet, and an elu-
sive collision—have propelled the psychological research on cross-modal perception 
in which audition and vision are inextricably intertwined. These occurrences are now 
known as the McGurk Effect [16], the ventriloquist effect [1], and the bounce-
inducing effect [28] respectively, and all three have proven remarkably robust. Yet 
the study of cross-modal perception currently relies heavily on behavioral experi-
ments using simple sounds and simple animations. While these studies have been 
theoretically informative, their contexts are so simplified that it is often difficult to see 
how the findings can be ecologically valid or practically valuable. The present study 
examines possible cross-modal effects of a musical parameter (tempo) on the percep-
tion of a human movement quality (speed) in hopes that this may be a first step to-
wards widening both the contexts in which cross-modal effects are studied and the 
application areas in which the findings can be used. 

1.1   Cross-Modal Perception 

Discussions about cross-modal perception often center around the McGurk effect or 
the ventriloquist effect and their variants, both of which are situations in which vision 
dominates the effect. This paper is primarily interested in the opposite situation—
when sound affects vision—and thus draws from examples in which sound directly 
affects perception of spatial/temporal organization and visual movement. The way in 
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which sound is combined, or not combined, with a visual display can influence per-
ception of object organization and movement within the scene. O’Leary and Rhodes 
[21] for example, showed that the perceived organization of a sequence of high and 
low tones could influence the perceived organization of moving dots on a visual dis-
play. Auditory information alone may be perceived differently depending on tempo: 
at slow tempi, alternating high and low tones are perceived as a single stream of 
sound while at high tempi the high and low tones segregate into separate streams [4] 
The perception of visual information varies similarly: when dots are displayed mov-
ing from left to right in alternating high and low positions at slow rates, a viewer per-
ceives a single dot moving up and down while at faster rates a viewer is more likely to 
perceive two dots moving horizontally. O’Leary and Rhodes showed that when the 
high and low tones were heard as two streams, viewers were more likely to see two 
dots even at rates which would, in a unimodal display, normally result in the percep-
tion of one dot. The perceptual organization of objects in the scene therefore also pro-
duced a change in the objects’ perceived movement pathways. Examining this more 
directly, Sekuler, Sekuler, and Lau [28] showed that movement pathways can be in-
terpreted differently in the absence or presence of sound through the bounce-inducing 
effect, where two moving targets are seen to stream through each other in silence but 
are seen to bounce off of each other when a sound is introduced at the moment of vis-
ual coincidence. This effect occurs because the visual stimulus is inherently ambigu-
ous. Sound resolves the ambiguity by biasing a viewer to favor integrating sound and 
movement into a single event that makes sense [1].Yet Shams, Kamitani, and Shimojo 
[29] demonstrated that a single flash of light accompanied by multiple beeps is per-
ceived as multiple flashes. Thus even when no ambiguity is present sound can qualita-
tively alter perception of a visual stimulus. These findings therefore support Vroomen 
and de Gelder’s contention that “cross modal combinations of features not only en-
hance stimulus processing but can also change the percept.” [31]  

Perceptual judgment tasks have indicated that audition dominates vision in tempo-
ral processing. This is sometimes called auditory capture and it stems from claims that 
vision and audition are each more sensitive to spatial and temporal processing respec-
tively and from evidence that one modality dominates the other when conflicting spa-
tial and temporal information is presented. One such study by Repp and Penel [26] 
asked participants to tap their finger in synchrony with auditory and visual sequences 
containing an event onset shift, with the expectation that this would cause involuntary 
phase correction responses. Their auditory sequences consisted of identical high 
pitched piano tones and their visual sequences consisted of black X’s on a screen and 
flashing lights. Within the unimodal conditions, audition produced the smallest vari-
ability in taps, larger phase correction responses, and better event onset shift detec-
tion. Interestingly, results from the bimodal condition were very similar to those of 
the unimodal auditory condition indicating that although viewers’ attention was aimed 
at the visual sequences, they depended more upon auditory information to perform the 
task. If this holds true for more complex stimuli, it suggests the possibility that audi-
tory information also dominates temporal perception when watching human move-
ment. The bounce-inducing effect is additionally an example of congruence—the 
combination of two media that produces the perception of a relationship between 
them even when such relationships are coincidental. When two media are presented 
simultaneously, a viewer assumes relationships between the two media exist and thus 
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looks for them [5][10][18]. Bolivar et al. termed this finding “visual capture” [5]; in 
other words, visual stimuli influence people to interpret simultaneously presented 
auditory stimuli as somehow related. Likewise auditory capture may occur from con-
gruence, as when music influences people to perceive simultaneously presented visual 
material as somehow related. Lipscomb and Kendall [15] for example, paired an ab-
stract film excerpt with a variety of different musical accompaniments and found that 
viewers perceived several musical choices as a “good fit.” Similarly, Mitchell and 
Gallaher [18] paired three different dance sequences with three different musical  
sequences and found that congruence was perceived among several different combi-
nations of dance and music (not only between the dance and its intended musical se-
lection). Although Bolivar et al. used visual images with a strong narrative context in 
their experiment, the findings of Lipscomb and Kendall as well as those of Mitchell 
and Gallaher suggest that the simultaneous presentation of abstract sound and move-
ment may be well suited to produce perceptions of similarity which may, in turn, fa-
cilitate crossmodal effects. 

1.2   Music Perception and Human Motion 

Perception of sound with human movement has been studied to some degree in the 
area of music perception as it relates to dance. Much of this work focuses on estab-
lishing congruence between music and dance by focusing specifically on dynamic 
qualities [9], general emotion or style [18], or section beginnings and endings [12] of 
both sound and movement. One recent study, however, examined the effects of vari-
ous sound parameters on imagined motion. Eitan and Granot [8] asked participants in 
their experiments to visualize an animated human character (cartoon) of their choice. 
They were presented brief musical selections, and for each selection were asked to 
visualize their character moving in an imaginary animated film shot with the given 
melody as its soundtrack. Their purpose was to analyze the relationship between mu-
sic and motion in imagined space based upon Clarke’s [6] contention that “since 
sounds in the everyday world specify (among other things) the motional characteris-
tics of their sources, it is inevitable that musical sounds will also specify…the fic-
tional movements and gestures of the virtual environment which they conjure up” [8]. 
The experiment produced an asymmetrical model of imagined musical space—the 
fact that a musical stimulus seemed to suggest a particular kinetic quality did not im-
ply that the opposite musical stimulus suggested the opposite kinetic quality. Central 
to the results of this experiment however, is the finding that by changing sound pa-
rameters, participants’ imagined motion would change predictably. This suggests that 
there may be certain natural affinities between sound parameters and movement pa-
rameters, yet the asymmetries discovered suggest that the way these affinities are 
structured may be somewhat nuanced.  

2   Experiment 

Among the various sound parameters in Eitan and Granot’s study, inter-onset-
intervals (IOI, the interval of time between the onsets of successive sounds) were 
found to affect imagined motion most strongly and symmetrically. Decreasing and in-
creasing intervals strongly influenced participants to imagine motion speeding up and 
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slowing down respectively. In short, what we hear affects the movement we imagine. 
Historically and theoretically, this finding is not surprising. The association between 
tempo and human movement speed is arguably the most apparent sound-motion rela-
tionship. This association begins in early infancy, evident in high sensitivity towards 
“regular synchronization of vocal and kinesthetic patterns” [22] and this sensitivity 
continues to develop through childhood [19]. Humans seem to have an ingrained pen-
chant for rhythmic synchronicity in their own movements [17], whether it is to syn-
chronize with an auditory pulse or to synchronize with the movements of others 
around them. Phillips-Silver & Trainor have further established that for both infants 
and adults, auditory encoding of rhythmic patterns can be directly influenced by the 
movement of their own bodies [24][25]. In short, the movement we feel affects what 
we hear. Within the context of music and dance, it is also fairly common for different 
pieces of music to “bring out” different dynamic qualities in the same dance. Al-
though this particular point has not been studied empirically, it may be supported 
somewhat by the congruence studies mentioned above and it hints at the possibility 
that a sonic change could cause a real change in the perception of a dynamic move-
ment quality. In short, it may be suggested that what we hear affects the movement 
we see. Based on these reasons, the present study hypothesized that a decrease or in-
crease in inter-onset-intervals would cause a change in the perception of visual 
movement speed. Would viewers be influenced to perceive a pairing of movement 
with a fast tempo as faster overall than a pairing of the same movement with a slow 
tempo? And if so, could it be conceptualized as a variation on auditory capture? 

2.1   Method 

Fourteen undergraduate students participated in this study on a voluntary basis and 
received one class credit for their time. They were instructed that the experiment was 
about the perception of human motion but beyond that, all were naïve to the purpose 
motivating this study. Stimuli consisted of videos showing six movements chosen 
from Laban Movement Analysis [14]—rising, sinking, advancing, retreating, spread-
ing, and enclosing (Figure 1). A single dancer was recorded doing all six movements 
at three speeds—fast, medium, and slow—with a camcorder synchronized to a mo-
tion capture system resulting in 18 video clips and 18 corresponding motion capture 
data files. 

The motion capture data was fed into a pattern recognition model, which analyzed 
the movement (100 frames/sec) based on the probability that one of these six move-
ments was occurring (see Appendix for details). These probabilities were then put 
through a Max/MSP program, which generated sound from the data. The sounds pro-
duced were series of clicks, varying in IOI rate according to the speed of movement. 
Three base rates (550 ms, 500 ms, and 450 ms) and three maximum rates (150 ms, 
100 ms, and 50 ms) were used to control the IOI and the probability ratings from the 
motion analysis determined the transition from base rate to maximum rate. Thus when 
no movement occurred, the IOI rate was simply the base rate; when fast movement 
occurred, the recognition model would rate the probability of one of these movements 
occurring very highly and consequently the IOI would decrease quickly but when 
slow movement occurred, the probability ratings increased more slowly causing the 
IOI also to decrease slowly. Each of the 18 data files was put through the Max/MSP  
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Fig. 1. The dancer demonstrating the shape qualities: rising, sinking, advancing, retreating, 
spreading, and enclosing 

patch 9 times (one for each base rate/max rate pairing) and the resulting sound files 
were synchronized with their corresponding video clip, producing a total of 162 video 
clips. Participants watched the videos on a 20 inch wide screen computer and heard 
the sound through external speakers. They were presented each video individually fol-
lowed by two statements with which they rated their agreement on a scale of 1 
(strongly disagree) to 7 (strongly agree), indicated by numbered buttons. The first 
statement was always either “the movement was fast” or “the movement was slow.” 
The second statement functioned primarily as a distracter. Participants saw each video 
exactly twice and responded to both the fast and slow statements for each video. The 
order in which the videos were presented was randomized and for each video, half of 
the participants responded to the fast statement first while half responded to the slow 
statement first. 

2.2   Results 

Changes in IOI were found to influence viewers’ perception of human movement 
speed for one set of videos in our experiment. For the medium speed retreating 
movement, participants indicated significantly different levels of agreement with the 
statement “the movement was fast” as the minimum IOI length decreased, even 
though the actual movement they saw was identical across the different tempos. This 
difference was statistically significant (F(2, 96) = 3.17, p < .05). There were no statis-
tically significant differences across inter-onset intervals for the other videos that we 
presented, although there was a main effect of actual movement speed (Figure 2), in-
dicating that participants were attentive to movement speed and could accurately dis-
tinguish between slow, medium, and fast movements (F(2, 1779) = 400.16, p < .01). 
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Fig. 2. This graph shows the average rating of movement speed (avgRESP) participants gave 
for the videos as a function of the actual speed of movement (MRATE). MRATE is defined as 
the actual movement rate and coded as 1 (slow), 2 (medium), and 3 (fast). 

2.3   Discussion 

The results provide some preliminary support for the hypothesis that differences in 
tempo, specifically inter-onset intervals, may be able to affect the perception of ob-
served movement; however, the limitations of this study are clear. It is possible that the 
rating task used to measure perceived movement speed was either too cognitive or too 
coarse-grained. More precise measures achieved through a staircasing method may 
prove fruitful in attaining significant results. Additionally, it may be necessary to de-
fine objectively what is meant by slow, medium, and fast movement speeds. If many 
instances of cross-modal effects occur when there is ambiguity within one modality 
then it should be the case that ambiguous movement speed—the range within which it 
can be perceptually be interpreted as either fast or slow—would be most likely to show 
the effect. We are currently exploring both of these with additional tests.  

3   Conclusions 

Further studies will solidify the speculations prompted by this preliminary study and 
it remains to be seen how and where the findings of such studies can be applied. The 
various ways in which audition and vision have already been shown to interact make  
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this area worth investigating further and furthermore, this area may prove interesting 
to artists and developers of computer interactive environments that use human move-
ment as input. If sonic feedback is to be used as a response to movement, it will be in-
formative to know what, if any, effects on human motion perception are caused by 
dynamic sound changes, how these effects may function differently within a given 
context, and how attention may facilitate or inhibit them. 
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Appendix 

Laban Movement Analysis (LMA) framework is a systematic approach to under-
stand, analyze and notate full body human movement, originated by Rudolf Laban 
[13]. For the most part, LMA is divided into four categories: Body, Space, Effort and 
Shape. The Shape, component of LMA in general elicits the form, or forming of the 
body. One sub-component of Shape, Shape Qualities, concerns itself with how the 
body changes its shape in a particular direction. Figure3 shows a body-centered coor-
dinate system with horizontal plane side-to-side (across the shoulders), verti-
cal/coronal plane head-to-toe, and sagittal plane back-to-front. Rising/sinking fall on 
the vertical plane, retreating/advancing fall on the sagittal plane, and enclos-
ing/spreading fall on the horizontal plane as well as reveal the general folding and un-
folding of the body. All movement is comprised of one, two or three of these qualities 
depending on the complexity of the movement itself. Metaphorically, how one em-
bodies Shape Qualities can reveal nuances of one’s mood or character. Currently, we 
have focused most of our attention on Shape Quality (SQ) analysis. 

While it may not seem complicated to a casual observer, doing SQ analysis compu-
tationally is quite difficult because there is no single, consistent way one can express a 
particular quality. One may advance, for instance, by walking towards something, by 
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Fig. 3. Body-centric coordinate system and Shape Quality (SQ) illustrations 

pointing, or simply by craning one’s neck forward in a slight and subtle way.  Never-
theless, SQs do imply tendencies on the movement of individual joints and limbs 
within the context established by a body-centric coordinate system with origin at the 
navel (Figure 3). For instance, if someone is rising, it is more likely that their torso 
will rise than sink.  Similarly, SQs may imply non-local tendencies, such as an up-
wards shift of the body’s enter of mass with respect to the horizontal plane. 

We briefly present the key features of our framework “bottom-up” for inferring 
Shape Qualities, beginning with raw motion capture data and ending with the SQ hy-
pothesis. First, we extract mid-level features from the raw, labeled marker position 
data. Second, we model movements of individual body parts and changes in global 
body characteristics (e.g. are the arms spreading or enclosing, the body centroid rising 
or sinking?) in terms of feature trajectory dynamics.  

 

Fig. 4. Single time slice DAG of basic Shape Quality inference model 
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Figure 4 displays one time slice of the DAG (directed acyclic graph) or probabilis-
tic influence diagram [20, 23, 30] underlying our model, with clear and shaded nodes 
representing hidden and observed variables respectively.  A DAG is a graphical repre-
sentation of a factorization of a joint probability distribution into conditional distribu-
tions. If a DAG consists of nodes X1:N the corresponding factorization of P(X1:N ) = 
∏i=1:N P(Xi | Pa{Xi}), where Pa{Xi} are the parent nodes of Xi. For instance, in Fig-
ure.2 we have P(Ri
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In Figure 2 Yi
t: i∈1:3, t∈1:N, denotes each of the mid-level feature observations 

calculated at the current time t (frames; 100fps) using the motion capture data.  These 
features depend on the body-centric coordinate system shown in Figure 1, displaying 
horizontal, coronal, and sagittal planes. These features are as follows. 

•   Y1
t -- Mean marker height describes the global body position along the vertical 

axis (perpendicular to the horizontal plane). Changes in this feature are highly infor-
mative of rising/sinking.  

•   Y2
t -- Frontward placement is the running sum of the change in mean marker po-

sition as projected onto the front direction (perpendicular to the coronal plane). 
Changes in this feature are highly informative of advancing/retreating. 

•   Y3
t -- Lateral marker variance is the magnitude variance of all marker positions 

as projected onto the coronal plane. Changes in this feature describe the fold-
ing/unfolding of the body about its navel center, and are thus highly indicative of en-
closing/spreading. 

To reduce the effect of noise in the marker positions, as well as marker mislabeling 
and occlusion, the underlying state values are partially denoised using a second order 
Savitsky-Golay filter [27] over 20 frames. 

Each mid-level feature observation, Yi
t, is modeled as a corresponding inherent fea-

ture Xi
t, corrupted by noise to sensor inaccuracies. We model this noise as additive 

zero mean Gaussian noise:  P(Yi
t | X

i
t) ∼ N(Xi

t,σ2
Y,i) 

Also corresponding to each Yi
t is a discrete Shape-indicator hypothesis Ri

t∈{-1,0,1} 
corresponding to different Shape Qualities depending on i and  models Xi

t  as decreas-
ing (-1), constant (0), or increasing (1). For example, suppose the inherent mean 
marker height is increasing. We denote this fact by R1

t = 1, which specifies that X1
t 

trends upward and implies that the Shape Quality expressed on the vertical plane is 
rising.  Similarly, R1

t = 0 and R1
t = -1 denote neutral and sinking qualities on the ver-

tical plane.  
We observe that the trajectory of X1

t is smooth, and displays tendencies condi-
tioned upon the Shape Quality expressed at time t. To model the dynamics of  Xi

t, we 
specify Vi

t, as the time derivative of Xi
t i.e., P(Xi

t | X
i
t-1,V

i
t) concentrates deterministi-

cally on Xi
t = Xi

t-1 + Vi
t.  The tendencies displayed by the trajectory of Vi

t given Ri
t are 

as follows: 

1. Vi
t > 0, Vi
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t-1 when Ri

t = 1 and Ri
t-1 = 1 
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t  ≈ 0, when Ri

t = 0 
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P(Vi
t | V

i
t-1, R

i
t-1, R

i
t) is developed by encoding the  above tendencies using Jaynes’ 

principle of maximum entropy, according to which maximum entropy estimate is the 
least biased estimate possible on the given information which is maximally noncom-
mittal with regard to missing information. Hence to deal with situations involving un-
certainty i.e., incomplete knowledge regarding the system to be modeled, the optimal 
solution is the model that satisfies the knowledge or constraints that we have regard-
ing the system and the one which has the maximum entropy [11]. Let us first consider 
the first two cases i.e., we have Vi

t  > 0 , when Ri
t = 1 and Ri

t-1 = 1 and  Vi
t  < 0  when 

Ri
t = -1 and Ri

t-1 = -1. Furthermore, we expect some continuity of Vit; i.e., Vi
t  ≈ Vi

t-1, 
which can be controlled by E| Vi

t  - V
i
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V,i. Putting these constraints together and 
using the methods in [7], we can solve for the maximum entropy dependence in 
closed form. 
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where N + and N -, are Gaussian distributions truncated to be positive and negative re-
spectively, sharing the mean Vi

t-1 and variance σ2
V,i. 

When the Shape Quality changes from t-1 to t we do not constrain Vi
t  ≈ Vi

t-1, we 
instead allow for sudden changes in dynamics, weakly constraining Vi

t  ≈ V1,i (for Ri
t = 

1 and Ri
t-1 ≠ 1) and Vi
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For Ri
t = 0, we have Vi

t ≈ 0; using similar arguments as above we specify:Vi
t  ∼ N (0, σ2

z,i). 
To complete the description of our model we need to specify P(Ri

t | R
i
t-1). We define q+ as 

the probability of transition out of state 1, meaning the probability that Ri
t ≠ 1 given Ri

t-1 = 
1. The average length of 1 regions is approximately 1/ q+ and p+=1- q+. Similarly, q- is the 
probability of transition out of state -1, with p-=1- q-. Now we can proceed to specify P(Ri

t 
| Ri

t-1) as a first order Markov, state transition distribution (Table.1). 

Table 1. Specification of  P(Ri
t | R

i
t-1) 

Ri
t-1 Ri

t = 1 Ri
t = 0 Ri

t  = -1 
1 p+ 1- p+- q+p- q+p- 
0 p+ 1- p+- p- p- 
1 q-p+ 1- q-p+- p- p- 

The overall dynamic Bayesian network is in the form of a non-linear, non-
Gaussian switching state space model. Via SIR particle filtering methods 
\cite{Arulampalam01}, we compute the posterior distribution of the SQ hypothesis 
given all feature observations up to and including the present time and choose Rit that 
maximizes this posterior; i.e. the filtered posterior P(Ri

t | Y
i
1:t), i∈1:3. It is well known 

that this choice of Ri
t yields the minimum-error decision [2]. 
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