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Abstract. This paper discusses musical form from a cognitive and a 
computational viewpoint. While several time-windows exist in the brain, we 
here put emphasis on the superchunks of up to more than 30 seconds lengths. 
We compare a strategy for auditive analysis based on human cognition with a 
strategy for automatic analysis based on feature extraction. The feature 
extraction is based on the musical features rhythm, timbre and chroma. We then 
consider the possible consequences of this approach for the development of 
music generating software. 
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1   Introduction 

If you look through your music collection, you are bound to find that most of the 
music in it − perhaps 80−90 % − is structured in such a way that a formal change 
takes place every 30−40 seconds or so. A formal change can be a change from verse 
to refrain, from A-section to B-section, a repetition, a change of key, etc. Music is 
generally made up of sections, and the longer time span of the whole piece of music is 
subdivided into sections with different qualities. This is true for most of the world’s 
musics, regardless of culture and style. 

This way of structuring a piece of music is so ubiquitous that it is reasonable to 
assume that it reflects a built-in characteristic or constraint of the human mind/brain. 
Such a constraint may well be biologically determined, something that can be 
deduced from the fact that nursery rhymes all over the world share the same basic 
structure and the same temporal dimensions [1]. However, this innate tendency of 
human cognition to structure and group musical sound into sections of certain 
proportions is difficult to explain. It may be tied to the limitations of our working 
memory as suggested by some [2, pp 49−51]; or it could be seen as the product of an 
attention cycle, that would then be the result of the need of the human brain to 
perform an attention switch every so often in order to reorganize its content [1]. 

On the computational level, much interest has been put into the automatic 
segmentation of music into e.g. chorus/verse. The automatic segmentation can be 
used for many purposes, including creation of a shorter preview with no repetition of 
chorus, skipping of intro in live DJ situation, for live recomposition, and as an aid in 
music analysis. In this work, a method for automatic segmentation of music, based on 
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features related to the perception of music is used as the basis for a shortest-path 
method to find segment boundaries. The performance of the features, rhythmogram, 
timbregram, and chromagram, are then compared to the musical analysis, and the 
theories from cognitive science. In all cases, the typical segment length is observed 
and compared. An informal analysis of the musical changes that create the segment 
boundaries is performed. The result of this analysis is used in a simple, stochastic-
based melody generator, and simple changes to the possible notes, the dynamic level 
and interval between notes is inserted in order to create music and compare the 
structural changes of this music to that of the musical examples. 

2   Temporal Cognition and Musical Form 

The temporal organization and function of human cognition is full of complexity. In 
spite of recent advances in the technology for brain studies we still know very little 
about the brain’s performance over time. Recently, however, the theory of chunking 
has gained some momentum [2 pp. 47−59, 3, 4 pp. 103−113]. According to this 
theory, our temporal cognition is structured in three distinct layers, serving different 
purposes and engaging different brain areas. At the microlevel we perceive the world 
pre-consciously as perceptual qualities, sometimes called qualia, which are organised 
in coherent structures, in order to be interpreted or conceptualized. These chunks of 
information are presented at the mesolevel, where we consciously consider objects 
and events, statements, gestures etc. In order to bring coherence into the flow of 
events, we organize the chunks in larger groups or super-chunks at the macrolevel, 
placing the individual chunk in a larger context.  

Psycho-physical evidence shows that the brain has a number of distinct time-
windows that can be seen as biological constraints on the cognitive processes [1]. 
Thus, the pre-conscious microlevel of subchunks extend from 30 ms to 300 ms; the 
conscious mesolevel of chunks from 300 ms to 3 sec; and the reflective macrolevel of 
superchunks from 3 sec to roughly 30−40 sec., where the limitation of our memory 
systems sets in. Naturally, we are not consciously aware of these temporal dimen-
sions, as the brain has developed mechanisms to deal with them so that we can 
experience the world as a uniform flow of time.  

What interests us here is the grouping of chunks into superchunks, which we see as 
a way of understanding the formal level in music. Individual melodic phrases or 
gestures are grouped together in superchunks that are limited by the brain’s memory 
capacity. At a simple, generic level, music is organized in sections, the sizes of which 
fall inside certain boundaries. In fig. 1 below we see the organization of a typical 
popular song [5] in A-sections and B-sections, further elaborated with intro, outro and 
a contrasting C-section. The A-sections have a length of 32−33 seconds, while the B-
sections are 30 seconds long. 

Before we proceed let us note that the definitions of musical form applied here 
rules out certain highly developed artistic forms, repetitive forms, etc. that cannot be 
adequately dealt with inside these simple paradigms (see [4 pp. 20−28] for a  
discussion). 
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A A AB B B - solo BCA A AB B B - solo BC

 

Fig. 1. Jamie Walters: Hold On (from [4], used with permission from Peter Lang) 

2.1   Musical Form between Change and Continuity 

The question we need to answer at this point is: how are the formal properties of a 
musical piece inscribed in the music-as-sound? Let us look at fig. 1 again. In a case 
like this, the form of the piece is defined by the song. The recurring refrain  
(B-section) and the developing verse (A-section) together determine the main aspects 
of the formal structure. We can imagine certain variations of the form, and indeed 
musicians make this kind of variations for live-versions, cover-versions etc. But the 
contents of the verse and the refrain cannot be changed much without jeopardizing the 
identity of the piece. In a song like this, the form is mainly determined by the text. 

But let us set aside the question of the text for now and focus more closely on the 
music itself. Even without the text, for instance in an instrumental version of the same 
piece, the form would be clear. This is possible because the music is designed to 
enhance the individual qualities of the A-section and the B-section respectively, in 
order to emphasize the contrast between them. A number of musical parameters are 
shaped to this end. For instance the singer performs at an intimate medium level − 
more or less with a speaking voice − in the A-sections (verse), while he sings out at a 
higher pitch in the B-sections (refrain). Another important point is the contrast 
between the harmonic structure of the two sections. Also the rhythmic effect of the 
accompaniment and the dynamic level of the two sections differ considerably. 
Orchestration is yet another favourite parameter for arrangers, in this case the chorus 
accentuates the dynamic level of the B-section, when it joins in the Hold On refrain.  

In other words, we have an example of musical form as established through the 
balance between continuity and change. Continuity is constituted by the text and its 
narrative; by the singer’s voice and the acoustic space provided by his band (acoustic 
guitar, bass and drums, organ, chorus and lead-guitar is a safe and well-known frame 
for a narrative); and by the tempo, which makes us entrain to a certain pulse. 
Variation is set up in this case through the devices listed above: the level of the voice; 
harmonic structure; dynamic level; and orchestration. In short: some musical 
parameters are kept constant, while others change from section to section. 

Let us look at another example (fig. 2). In the third movement of Mozart’s piano 
sonata in A major, K. 331, also known as Alla Turca [6], there is no song, and 
consequently no text, to determine the formal division of the piece. The structure is 
constituted on purely musical grounds, yet we find a form comparable to the form of 
Hold On.  
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A B BC A B Coda

a minor A major F# minor A major a minor A major A major

A B BC A B Coda

a minor A major F# minor A major a minor A major A major  

Fig. 2. Mozart’s Alla Turca (from [4], used with permission from Peter Lang) 

Here the A-sections last 41−42 seconds, the C-section 40 seconds, while the B-
sections, that function as refrains and provide the transitions from A to C and vice 
versa, only last 13−14 seconds. (These timings depend of course on the tempo of the 
specific performance, here we have used Daniel Barenboim’s recording). Continuity 
is established through a number of parameters: the sound of one piano playing 
(timbre); tempo and meter (rhythm); key and harmonic development (chroma); 
repetition and motivic development are some of the more obvious. 

As for the parameters used in creating contrast between sections, we can take 
harmony and texture as evident examples. Harmonically, the A-sections are in A 
minor, the B-sections in A major and the C-section in F# minor. By texture we mean 
a combination of rhythmic and gestural qualities, timbre and density. Here the A-
section presents a simple melodic gesture with an everyday ‘um-da-da-da’ rhythm in 
the left hand accompaniment. The C-section uses the same type of accompaniment, 
while the right hand abandons the melodic gestures and instead engages in streams of 
energetic 16th-notes. And the B-section, serving as a transition space between A and 
C, uses full chords, percussive rhythm and a high dynamic level, thus balancing out 
its relative brevity with more sound, so to speak.  

We shall not go into more details concerning Mozart’s musical architecture. The 
main points to be gained from these examples are, once again, that musical form is 
constituted through the division of the musical timespan into sections of a certain size; 
that the individuality of these sections is brought about through a balance between 
change and continuity; and that this play of variation inside a frame of overall unity is 
grounded on the tendency of the human mind to create coherence in event structure, 
which prompts us to generate expectations that can be fulfilled or disappointed. 

The purpose of this study of musical form was to investigate the possibilities for a 
computer-based retrieval of musical form and a modelling of this form, with a 
subsequent regeneration of music. We will engage the question of whether the 
musical parameters involved in the human construal of musical form can be defined 
in such a way that they can be employed in a mathematical analysis of sound. In the 
following we shall introduce some strategies for retrieval of information pertaining to 
musical form from the sound stream. We will concentrate on the transition points 
between sections (A-B; B-C etc), as they mark the points in time, where the change of 
musical parameters is heard, and where fulfilment/expectation will be experienced. At 
this stage we have chosen to examine three parameters: timbre, chroma and rhythm. 
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3   Retrieving Structure in Music 

It is our aim to find the same music structure through automatic segmentation as is 
found through music analysis. This supposedly corresponds to the temporal laws that 
are the result of temporal processing in human cognition.  

We present methods for obtaining measurements of the music that correspond to 
the sound of the instruments playing (timbre), the tempo and meter (rhythm), and the 
key and harmonic development (chroma). In order to do this, we first identify the 
single musical events (notes). After this, the rhythmic feature is found by comparing 
the single events over time, the timbre feature is found by measuring amplitude over 
time and frequency, with perceptually related frequency and amplitude features. 
Finally the chroma is found by summing all partials into the twelve chromas. Both the 
timbre and chroma features are smoothed over time, to remove small irregularities 
that occur in addition to more consistent musical events. Finally, we present an 
approach to the problem of retrieving structure in music. 

3.1   Feature Extraction 

Notes are the fundamental events in the music considered here. A note has a starting 
point, a rather short attack, a sustain/decay, and a release. Because the attack 
generally is short it will be possible to measure the point of attack by calculating the 
amplitude as a function of time, and taking the time derivative of it. Here, this is done 
by subtracting the previous time step amplitude from the current time step amplitude. 
The maximum of the time derivative has been shown to be an important cue when 
investigating the perception of the attack [7]. By estimating all partial amplitudes, and 
summing the time derivative of all of them, multiplied with a frequency dependent 
weight in order to have perceptually normalized amplitudes, a well-performing 
feature, called the perceptual spectral flux (psf), of the note onset detection problem is 
obtained [8]. 

The rhythm feature, called rhythmogram, is obtained by calculating a windowed 
autocorrelation function on the psf, in which the regularity of the note onsets intervals 
are found in overlapping segments of the music [8]. The timbre is calculated using a 
front-end (acoustic pre-processor) used in speech recognition, the perceptual linear 
predictive (plp) analysis [9]. In order to remove noise and intermittent events, the plp 
is smoothed over time [10] using a Gaussian weight. The resulting feature is called 
the timbregram. Finally, the key and harmonic development is measured using the 
chroma that maps the partials into twelve bands, corresponding to the twelve notes of 
one octave. The resulting measure, smoothed in the same manner as the timbregram is 
called the chromagram. These three features are visualized in fig. 3. The 
rhythmogram has rhythm interval in seconds on the y-axis, the timbregram has 
frequency in bark [11], corresponding to the perceptual frequency scale, and the 
chromagram has note pitch names. All three have time in seconds on the x-axis. 

We can read from the rhythmograms that Hold On has a more steady beat, while 
Allaturca varies more in tempo, and even has sections with no clearly distinguishable 
rhythm. The timbregram also contains the loudness, and illustrates remarkable similar 
structure in the two songs, with two short crescendos in the first two-thirds of each 
song, and a longer crescendo in the last fourth. Comparing the two chromagrams, the 
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most striking difference is that of clarity. The Mozart piece presents a clear and 
simple tonal structure, while the Walters song seems more ‘muddled’. This reflects 
the fact that Mozart is played on a single well-tuned piano, while the pop song 
combines several instruments, including drums, all with large profusions of overtones, 
and furthermore the style itself is defined by lots of micro pitches, melodic glides etc.  

 

 

Fig. 3. Rhythmogram (left), timbregram (middle), and chromagram ( right), for Jamie Walters 
Hold On and Mozart Allaturca. Blue corresponds to little energy and red to much energy. 

3.2   Automatic Segmentation 

Through a visualization of the extracted music features it is made clear that 
segmentation of the music should be done in time areas where the feature is 
homogenous (has the same shape). This is done using the self-similarity measure, 
originally called recurrency plots [12], which measures the similarity of all the time 
segments to each other. In fig. 4 the self similarity (calculated as the L2 norm) is 
visualized for the same songs and features as in fig. 3. 

In the self-similarity plots, the homogenous segments are easily seen climbing the 
diagonal, in blue/dark. Certainly, the timbregram has more homogenous segments 
than the other two features.  
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Fig. 4. Selfsimilarity for the rhythm, timbre and chroma of Jamie Walters and Mozart 

Several methods exist for identifying the segment boundaries from the self-
similarity features. The novelty measure [13], calculated using the checkerboard 
kernel, gives an indication of the degree of novelty in the audio. If larger segments are 
to be identified, it necessitates a larger window in the self-similarity matrix. In order 
to diminish the calculation demands, [8] suggested to smooth the novelty measure 
calculated on small windows. [14] introduced a shortest path method for finding the 
optimum path. This method can create segmentation boundaries in many scales, from 
short segments down to note level, to large segments up to chorus/verse level. This 
was used in [10] to show that timbre performs slightly better than rhythm or chroma 
when comparing manual segmentation points with automatic ones. 

3.3   Retrieving Structure in Music 

In the preceding sections we have introduced two distinct strategies for the analysis of 
musical form. One is a listening strategy, which is based on the temporal properties of 
human cognition. The other is a mathematical approach performed automatically by 
the computer. They both deal with what is almost the same thing: the first with music 
as sound, the other with sound files. The question we now wish to address is whether 
these two strategies can yield comparable results. 
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Fig. 5. Rhythmogram for Jamie Walter with automatically found boundaries (solid) and manual 
boundaries (stipled) 

In the human listening strategy we look for changes in texture, orchestration, 
density, etc., while the computer establishes rhythmograms, timbregrams and 
chromagrams. Assuming that the extracted musical features, rhythm, timbre and 
chroma, can be interpreted as essential aspects of such musical parameters as 
harmony, texture, dynamics, orchestration etc, we would expect to see a correlation 
between the two approaches. In the following we shall be looking for the transition 
points between formal sections, such as A-B, B-C etc. These points mark the change 
from one section with a certain configuration of musical parameters to the next 
section with a contrasting configuration of musical parameters. They can be easily 
established by measuring the timing of the two pieces we have studied. The next step 
will be to insert these points in the rhythmo-, timbre- and chromagrams in order to 
compare them to the automatic segmentation points. Comparison between the formal 
and automatic segmentation using the shortest path method is shown in fig. 5 for the 
Walters rhythmogram, and in fig. 6 for the Mozart chromagram. 

In the Walters rhythmogram (fig. 5) we found 11 manual boundaries and 9 auto-
matic ones, with 7 matches between the two. In fact, there is perfect matching up to 
the point where the C-section, which is only half the length, is introduced. The 
contrast between B and C is mostly established through timbre and chroma and seems 
not to be discovered by the rhythmogram. 
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In the Mozart timbregram we found 8 manual and 11 automatic boundaries, and 8 
of these (all the manual!) match. The three ‘extra’ boundaries calculated in the 
timbregram might be explained as the result of a barely noticeable playing strategy, in 
which dynamic contrasts between sections will be enhanced by the player.  

 

Fig. 6. Timbregram for Mozart with automatic (solid) and manual (stipled) segmentation 

The musigrams visualized in fig. 5 and 6 are the best features for the two songs. 
The matches correspond to the standard information retrieval measures recall (64%, 
100%) and precision (78%, 73%) and the combined F1 measure of (0.7, 0.84), the 
best of the features, with F1values of (0.7, 0.54, 0.54) for Hold On and (0.52, 0.84, 
0.7) for Allaturca for the rhythmo-, the timbre-, and the chromagram. It is interesting 
to observe that the rhythmogram performs better with the rhythmic song, while the 
timbregram performs better with the classical piece. 

4   Perspectives in Music Generation 

Can the findings in the previous sections be used here to improve music generation 
algorithms? An attempt to do so is embarked upon here, by using synthesis of 
melodies made from random notes, using probabilities obtained from music 
databases. As we wish to take into account the temporal structure of generic music, 
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we will briefly present some methods to introduce structuring in the rhythm, timbre 
and chroma of synthetic music, and present some preliminary results.  

4.1   Stochastic Models 

The stochastic (random) models are implemented in practice by creating a probability 
density function (pdf), which states the probability of an event occurring, as a function 
of the variable. For instance, one pdf could give the probability of one note occurring 
as a function of the note value (pitch). In tonal music the notes of the musical scale 
used would typically have a larger probability. The values of the notes can then be 
found, in music generation, by using the inverse image formula [15]. 

As an example, the probability of a note being played has been estimated from a 
database of folk songs1. Music generation from simple note probability does not in 
itself render interesting music, but a conditional probability of the following note, 
when a note is played, improves the situation. This means that we add the interval 
probability to the note probability. The probability of an interval is assumed to be 
independent of the note; therefore the two probabilities can be multiplied in order to 
create the pdf used to find the next note. In this case, a rather pleasant stream of music 
is created, but still without enough structure to be really interesting (unless perhaps in 
relaxation use).  

4.2   Structural Improvements 

The first (chroma) improvement to this model is to use a subset of the notes at each 

structure. Indeed, from fig. 3 it is clear that only 3-5 chromas are played at the time, 
and from the figure and the discussion in the previous section, this set can be expected 
to change approximately every 30 seconds. Additional observation of the 
chromagram of 50 songs of different genres [10] reveals a similar chroma evolution 
for most songs, with variations in number of prominent notes and the rate of change 
of these notes. Nonetheless, the behavior found in the two songs analyzed here is still 
the most common. Therefore, this knowledge is inserted in the model, by only 
choosing a maximum of 5 notes initially, and replacing, adding or removing one note, 
or doing nothing every N seconds with equal (1/4) probability. N is a random variable 
with uniform probability between e.g. 30 to 40 seconds, the size of a ‘super-chunk’. 

The second (timbre) improvement is found by looking at the timbregram in fig 3. 
Indeed, both the rock and the classical music display the same structure, with respect 
to the timbre; a more quiet part is replaced by a louder part, this is repeated, followed 
by an even louder part and finally, the songs are ended by a strong segment. The 
strong parts seem to have relatively more energy in a higher frequency range. The 
quiet part is supposed to correspond to a verse, and the louder part to the chorus. 
Again, further observations of the timbregram of 50 songs [10] broadens the picture, 
as the number of chorus/verse repetitions, seems to vary between one and eight, the 
number of verses preceding the chorus vary between one and four, the dynamic 
difference between the chorus and the verse is also different between songs, and 
varying other differences are found, including more or less prominent intro/outros.  

                                                           
1 The Spring 2002 Digital Tradition Folksong Database, http://www.mudcat.org, (1 Nov. 2007). 
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A simple improvement to the stochastic note generation is attempted here, by 
increasing or decreasing the loudness and brightness with one-third probability each 
every N seconds. 

The final (rhythm) improvement to the stochastic music generation is found by 
looking at the rhythmogram in fig 3. Three things of importance to rhythm are 
observed in fig 3, and in additional observations of the rhythmograms of the 50 songs 
of [10]. First, the tempo may or may not drift up to perhaps 10%, secondly, there 
seems to be short passages of perhaps 10 seconds in which the rhythm is lost, i.e. 
there is no clear repetition rate in the instruments of the music. Finally, there is often 
inserted another rhythm of another rate.  

 

Fig. 7. Rhythmogram, timbregram and chromagram for a test signal with structural changes 

The tempo drift is regenerated by inserting a pause with varying length after each 
note. The length of the pause is governed by a Brownian noise (integrated white 
noise) whose rate of change decides the tempo drift. As it does not govern the 
structure of the music, the tempo drift is not included here. 

The short passages of arhythmic behavior can be recreated through changing the 
length of the notes in short passages. This is done by adding a pause of random length 
for short passages of approximately 10 seconds. Finally, the subtle change of rhythm 
is not attempted to be modeled here, as it necessitates a rhythm model. Such a rhythm 
model, while important, is not part of the present work. 

As an example of a note-based music with the proposed structural improvement, 
with regards to rhythm, timbre and chroma, a short melody with these improvements 
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has been created. The rhythmogram, timbregram, and chromagram of this sound-
structure are shown in fig 7. 

In an informal listening experiment performed using the authors mainly, the 
structural change on the chroma is the least perceptible. This is probably related to the 
stochastic nature of the note generation. The variation of loudness and brightness that 
induces structure in the timbre, seemingly renders interest and pleasure to the 
listening experience. The inclusion of arhythmicity that creates structure in the 
rhythm here dramatically breaks the listening continuity. Overall, by the simple 
melody and lack of rhythm by the recurrent notes of equal length, it is of course far 
from complex music, but we deem the structural inclusions promising. 

5   Conclusion 

In this paper we have compared a human listening strategy with a computational 
strategy. We have argued that the human tendency for organizing event structures in 
coherent sections or “super-chunks”, with a uniform internal structure and with 
contrasting features between sections, can be explored in computer based feature 
extraction.  The rhythmogram, timbregram and chromagram, presented here, yield 
results that can be compared to the ‘actual’ analysis of the two pieces used.  

The two approaches seem to be reasonably compatible. It would therefore be 
interesting to see if we can implement some of the methods used in analyzing music 
into ways of improving computerbased music generation. A possible, simple, model 
for changing the music in order to obtain structural changes is presented here. Based 
on a stochastic note generator, changes to the possible notes in the current alphabet, 
the loudness and brightness of the notes and the interval between notes recreate music 
with structural elements similar to the music examples. 

When comparing the two approaches we are in a way comparing human and 
computerbased cognition. Without entering into a philosophical discussion of the 
similarities and differences between human beings and computers, we would like 
to point out that the current study takes advantage of one obvious distinction 
between the two. A computational approach is basically a bottom-up approach, 
built on discrete events (in this case notes), while the human approach combines a 
bottom-up approach with a top-down approach, as seen in the organization of 
perceptual information is chunks and super-chunks. Further studies will not only 
lead to a ‘naturalization’ of computer generated music, but could also enhance our 
understanding of human cognition.  
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