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Abstract. A live algorithm describes an ideal autonomous performance system 
able to engage in performance with abilities analogous, if not identical, to a 
human musician. This paper proposes five attributes of a live algorithm: 
adaptability, empowerment, intimacy, opacity and unimagined music. These at-
tributes are explored in NN Music, a performer-machine system for Max/MSP 
that fosters listening and learning. Live improvisation is encoded statistically to 
train a feed-forward neural network, mapped to stochastic processes for musical 
output. Through adaptation, mappings are learnt and covertly assigned, to be 
revisited by both player and machine as a performance develops. 

Keywords: Live algorithms, improvisation, performance systems, artificial 
neural networks. 

1   Introduction 

Advances in our understanding of machine intelligence, in areas such as music infor-
matics, evolutionary computation and self-organising maps, open new avenues for 
creative performance systems in music. Such systems might collaborate in many mu-
sical contexts, not merely follow pre-programmed scores or depend on direct stimuli, 
but engage with performers at a commensurate level. This is the vision of the UK 
Live Algorithms for Music network, founded in 2004 by the author and Tim Black-
well1. A live algorithm is the function of an ideal autonomous system able to engage 
in performance with abilities analogous, if not identical, to a human musician [1]. 
Such an approach differs radically from the established paradigms of ‘live electron-
ics’; the computer-as-instrument (a tool that relies on human agency), or the  
computer-as-proxy, (a substitute for the ‘composer’ that implements pre-designed 
functions laid out in a musical score or rule set). A true live algorithm would offer a 
high degree of autonomy: capacities to invent, provoke and respond. 

Live algorithms are most germane when there are opportunities for such behav-
iours, i.e. when there is creative, group interaction. In this scenario there is no  
‘top-down’ control, no hierarchical human-to-human management analogous to user-
to-computer control. In truly ‘free’ improvised music, structure and character – in so 
far as they are evident – are emergent properties, products of heterarchical group  
                                                           
1 A collaboration between the Departments of Music and Computing at Goldsmiths, with the 

support of the Engineering and Physical Sciences Research Council. 
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interaction, and not the product of pre-defined rules. Musical languages are formu-
lated pragmatically, self-referentially and on-the-fly. Free improvised music offers a 
model for aspiring live algorithms and a challenging context in which one could be 
tested to the full. 

Section 2 below discusses potential attributes of live algorithms that are far-
reaching and intended only as a framework for discussion and future investigation. 
There are five attributes; adaptability, empowerment, intimacy, opacity, and (summa-
tively) the unimagined, as proposed by the author [2], [3]. These concepts are ex-
plored practically in the performance system NN Music, which has been developed in 
a number of compositional guises, with instrument-, timbre- and concept-specific ti-
tles: piano_prosthesis, cello-prosthesis, and au(or)a. There is a technical explanation 
of this system in section 3.  

2   Attributes of ‘Living’ Computer Music 

Adaptability. This is the ability to acclimatise to a shared environment, demonstrable 
in changes of behaviour. A musical environment capable of change – and therefore to 
demand adaptation – is unlikely to be pre-determined by fixed rules, stylistic 
assumptions or other formal constraints. Adaptation is not necessarily conscious or 
intentional, even though performers may wish to communicate with a machine. 
Lewis’s term emotional transduction, defined as a “bi-directional transfer of 
intentionality through sound” [4] establishes by implication that adaptations should 
occur in and of the medium itself, not via controllers, irrelevant gestural information 
or control data. However, Lewis’s assertion that a performer’s original intention – 
“emotional and mental” – can be preserved and then co-represented in the machine’s 
response is open to question.  

It can be argued that performers adapt to their shared sonic environment, not  
personally to one another. Stigmergy avoids the problem of personal intention and 
emphasises adaptation; this provides a model that is potentially valid for both human-
human performance and human-machine collaboration. Stigmergy is the process in 
which an insect population self-organises through the adaptation of individuals to 
their environment, and initially described termites interacting with their environment. 
Individuals do not commune directly, even though the resultant phenomena – nests – 
can be extraordinarily complex and seemingly designed. Computer simulations of this 
have been and other self-organising behaviours are well established and they are evi-
denced in the application of evolutionary computing to music [5]. Stigmergy as a 
model avoids the problem of intentionality and machine cognition; consequently, it 
avoids the potential pitfalls of anthropomorphism. It proposes a flexible, dynamic and 
adaptable system capable of novel problem-solving: An effective model of human 
creativity and more specifically, of improvised computer music [6]. 

Musical performance, whether between humans or machines, might be regarded as 
a complex and dynamic self-organising system if individuals commune with the 
shared audio environment rather than directly with one another. This assumption ig-
nores visual or other physical cueing, and emphasises listening.  

Musical collaboration in a human/social context involves a continuous process of 
adaptation based on mutual listening. Goals are identified by group members – who 
actively assume and cast roles – in order to adapt to the changing audio environment. 
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Goals might be attributable to ‘supra-personal’ social facts (such as norms of accept-
able behaviour, actions consistent with expectations or requirements). Even so, an en-
tirely new, shared history evolves as the cooperative experience develops. Players  
become aware of the appropriateness of their response to others’ contributions and 
appraise their own ability to initiate behaviour from others. Such processes have been 
observed in jazz groups [7]. Arguably, all such social behaviours occur by proxy in 
the shared environment: they are adaptive and essentially indirect. Whether or not it 
might ever be possible for computers to have an intentional response is an open  
question. However, optimisation methods, available in evolutionary computation and 
machine learning, might present the affect of intention. If interaction occurs only be-
tween performer and the environment, and between machine and its environment, the 
products of adaptation might be regarded as equivalent, and equally significant. It is 
then, arguably, inconsequential whether the interactions depend on machine algo-
rithms or human cognition.  

Empowerment. This entails control over decisions that impact upon future 
experience. Decisions have a context: the properties and consequences of options, the 
strategies that might inform choices and the criteria for their evaluation. In creative 
practice, such as improvised performance, decisions do not have easily definable 
strategies or evaluative criteria, but a framework must be at least implicit. Established 
AI systems that are effective in adapting to environments and delivering pre-defined 
outcomes are not necessarily useful. For example, BDI (belief, desire, intention) 
systems implement a rule-base, respond only to knowable environmental measures 
and have clear pre-determined aims, even though they actively respond to input and 
output while running [8]. Such behaviours are potentially antithetical to the 
exigencies of creative performance. 

Algorithms do not cognate – so they cannot make creative decisions – but they can 
produce non-arbitrary changes in state. Such changes can be instigated by non-linear 
dynamical systems; cellular automata, particle swarms, genetic algorithms and neural 
networks. The potential self-organising properties of these algorithms offer potential 
for novel problem-solving, invention and surprise. They do not necessarily achieve 
intended goals, but might find new ones. In musical performance, a non-arbitrary 
change of state is manifest as a ‘decision’ when it modifies the audio environment, 
even if this is the product of an adaptation. Consequently, the change is ‘empowered’ 
to demand a response from both human and machine participants alike; it has the af-
fect of intention. 

There is mapping problem. What structural and temporal features of music should be 
determined by a change of state manifest as ‘a decision’? It is easy to find examples of 
generative music where state changes are applied to the very surface of music. For in-
stance in evolutionary computer music, genotype (genetic code) and phenotype (charac-
teristics) have been mapped schematically and literally. Such approaches are, in effect, 
simple sonifications of a data space exploration, which may be of potential use for sci-
entific enquiry [9] but have limited interest as a means of creative production. 

Creative decisions might reference the structural properties, and implicit method-
ologies of music-making, and offer new possibilities at these levels. Computer ‘deci-
sion-making’ cannot define context, but could engage with it. A common problem is 
time; algorithms function independently of time, so for music, a real-time clock must 
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be imposed as a function of data sonification. It is unavoidable that contexts such as 
this – however fundamental and transparent – are established by the designer, in order 
to provide relations for creative behaviour. Eco’s term, the “field of relations”, em-
phasises the finite nature of an open work’s discontinuities and its field of possibili-
ties [10]. These relations provide a framework for decisions. So, even though a single 
point of view is absent and there is some devolution of creative responsibility, this 
does not entail an “amorphous invitation to indiscriminate participation”. Neither, by 
extrapolation, does the absence of a point of view (algorithms do not cognate) neces-
sitate a wholesale and literal transfer of state changes to the surface of the music, or to 
the framework and context for creative acts. Relations are underpinned by the capa-
bilities of the machine system, the technical approaches and aesthetic attitudes of the 
designer and live player. It is through an interplay of all these relations that empow-
erment might be perceived. 

Intimacy. This is experienced – or apparent – if there is a binding understanding 
shared by performers through informed listening and observation. This is a social 
process, but can be experienced in and through sound itself. A machine emulation of 
closeness and intimacy should attend to sonic experience, both in nuance and wider 
characteristics.  

Technological devices that produce control data from a user’s actions can only be 
receptive, not intimate. In music technology, the discourse around intimacy is really 
about responsiveness, i.e. emulation of a performer’s physical interaction with his/her 
instrument [11]. A truly intimate relationship – as occurs between musicians – is 
learned, rather than provided, and is an experiential phenomenon within the sound 
environment. (At least during a performance, before or after is another matter). It is, 
though, genuinely interactive.  

Intimacy suggests the psychological process of “optimal flow”; a goal-orientated, 
mental state that explores the limits of experience and expectation, obtaining pleasure in 
meeting challenges with appropriate skills [12]. It has been conjectured that the effec-
tiveness of group collaborations can be evaluated with this measure [13]. A machine’s 
contribution cannot be evaluated, of course, but a human performer, in his/her musical 
experience and interaction with the shared sonic environment, might infer that flow is 
occurring for all participants. This is particularly relevant when, for example by using 
neural networks, a machine can evidence prior learning and experience. 

Opacity. This is a prerequisite for this flow, an avoidance of the naïve processes of 
cause and effect (and their frequent boredoms for players and audiences alike). Inter-
activity is a well-discussed term in computer music but its currency has become a lit-
tle devalued. It is often equated with a one-directional transfer of information from 
user to machine; reaction, not interaction. A lack of opacity and uncertainty distances 
the performer from the machine. The relationship is then that of a familiar ‘subject-to-
object’, which by implication denies the possibility of intimacy: “…interactivity has 
gradually become a metonym for information retrieval rather than dialogue, posing 
the danger of . . . reifying the encounter with technology” [4]. George Lewis offers 
Voyager’s capacity for “variation and difference” as an alternative that avoids trans-
parent and consistent input-output mapping, but still provides against the appearance 
of randomness. 
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A truly interactive system ought to offer an ambiguous and shifting balance be-
tween the reactive and proactive, and across the threshold of the apparently chaotic 
and the readily comprehensible. 

Unimagined. The result of these attributes might be a ‘living’ computer music, an un-
imagined music, its unresolved and unknown characteristics offering a genuine reason 
for machine-human collaboration. If computers might extend, not parody, human 
creative behaviour, machine music should not emulate established styles or practices, 
or be measured according to any associated, alleged aesthetic. In living computer mu-
sic the contributions of all performers involved – human and machine –have equal 
significance, but may not necessarily be equivalent. Such music cannot be imagined 
or reproduced. 

Unimagined music, free from pre-defined rules or overt control, moves “… toward 
a permanent discovery – comparable to a 'permanent revolution’." [14]. Boulez refers 
to compositional method, the exigencies of musical form given a “fluidity of vocabu-
lary”, and the consequent need to de-linearise temporal structure. However, a ‘living’ 
computer music might be even more apposite, permanently exploring all elements of 
its emergent language, and in real-time, not just in concept.  

Freedoms, whether open to the player or to computer (e.g. by stochastic methods) 
might be better described as ‘informalities’. Unimagined music is a technological 
“musique informelle”, emergent and idiosyncratic; its coherence neither derived nor 
dictated. It “discards all forms which are external or abstract or which confront it in 
an inflexible way, free of anything irreducibly alien to itself or superimposed on it” 
[15]. Adorno’s term is not synonymous with the informal and intuitive; it does not 
deny the potential for objective and measurable structural complexity. This approach 
is arguably apposite to free improvisation and the claims of its practitioners. In ‘liv-
ing’ computer music, unpredicted acts of a performer, and implicit (i.e. virtual) acts of 
the machine should exemplify this objective complexity, but not through the simple 
sonfication of rules or sheer randomness. There should be a critical engagement  
between intended behaviours, an appraisal of potential behaviours and response to ac-
tual sonic realisations and their unfolding history. Ideally, there should be an integra-
tion of subject (performer) and organism (the musical system regarded as a whole). 

3   NN Music: A Performance System 

These five properties are addressed in the NN Music (Neural Network Music) per-
formance system, which brings together a solo player with a computer to mutually in-
teract by proxy in the sonic environment. Implementation is in Max/MSP, including 
the neural net external object op.fann.mlp by Olivier Pasquet2. NN Music has been 
deployed with a number of instrumental combinations under the titles au(or)a, pi-
ano_prosthesis and cello_prosthesis, the titles indicating a particular musi-
cal/compositional ethos. Au(or)a is intended for any solo instrument with Disklavier 
piano; the system produces MIDI data intended to emulate a virtual pianist (with the 
veracity of real-life instrumental sound offered by the Disklavier). The two 
_prosthesis works begin a projected series of pieces that bring together a specific  
                                                           
2 Available at www.maxobjects.com 
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instrument with a related (and transformed) library of samples and real-time manipu-
lations. There is therefore an added dimension of digital synthesis. The common  
creative concerns in these works are distance (conceptual and physical distances, 
human-machine aesthetic differences) and embodiment (to explore the notion of 
‘prosthesis’ an alternative to the user-interface paradigm for HCI [16]). 

3.1   PQƒ 

NN Music system is best described according to the modular PQƒ architecture pro-
posed for improvising performance systems [6]. This simple modular structure offers 
an empirical algorithmic model of the process of listening and comprehension (P), 
rendering of performance (Q) and creative thinking (ƒ) experienced by human per-
formers. It offers a direct analogy for machine musicians, although there is no attempt 
at symbolic representation. For a machine, P is an audio analysis function, Q is a  
synthesis function and ƒ(h) is some form of hidden, organising algorithm. P and Q  
interpret, and interface with, the sonic environment, and also communicate with the 
hidden algorithm: P obtains an analysis parameter set {p0, p1, …pn} from an audio 
stream X, relaying these to the algorithm. Q generates a synthesis set {q0, q1, …qn} 
from the output of the algorithm, which creates a new audio stream Y. This supposes 
that changes in state evidenced in ƒ(h) are scheduled in real-time, subject to the con-
tingencies of the inputs and outputs from and to the environment. X and Y may be 
considered either as distinct audio streams that contribute to the total sonic environ-
ment, or as two temporally spaced points on one continuous stream, depending on the 
musical application and hidden functions. 

P(ƒX)                               Q(ƒY)   

X → {p0, p1, …pn} → ƒ(h) → {q0, q1, …qn} → Y . 
(1) 

There is a vast array techniques deployed for all three modules in this schema. 
Creative computing applications have explored many approaches to ‘hidden’ genera-
tive algorithms ƒ(h); often, non-linear dynamical processes that display complexity, 
capacity for self-organisation, and/or patterns perceived to have some artistic value. 
Cellular automata, genetic algorithms, particle swarm and flocking algorithms and 
self-organising maps might be classed as such. Although differing widely in ap-
proach, these sub-symbolic techniques can be distinguished from those that have re-
course to a pre-defined, ‘expert’ rule-base. The latter approach constitutes a direct 
mapping from P to Q, i.e. an interface between performer and machine via a set of 
contingent rules in which all circumstances may be predicted in advance. Such ap-
proaches cannot be classed as ‘live algorithms’. 

Real-time Neural Networks. The feed-forward neural network allows unsupervised 
sub-symbolic learning and classification; the potential for self-organising, learning 
behaviours effective as an ƒ(h) patterning algorithm. The multilayer perceptron neural 
network is trained using a back-propagation error algorithm that minimises the error 
between required and actual outputs by gradient descent, given a set of pre-defined 
input and output conditions. As noted by Toivianen, this type of network benefits 
from a capacity for generalisation and tolerance to apparently unpredictable or  
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contradictory data; consequently it is well suited to classifying analysis of improvised 
music, the input state comprising attributes of the improvisation [17]. 

In NN Music, audio analysis P and synthesis Q are mapped via a feed-forward neu-
ral network in real-time. The network adapts to attributes of the performance, and 
outputs synthesis parameters accordingly. This is an original application for feed-
forward networks in that the training phase occurs during the musical performance, 
not prior to it. Training repeatedly recurs during performance, depending on the vari-
ance in musical behaviour measured from the human-produced sound. It compares the 
current behaviour to the history of classified behaviours in that performance, rather 
than simply to a set of previously defined classifications. This is enables the system to 
adapt to the contingencies of a specific performance, and also, through the writ-
ing/reading of network weight files, to previous performances. There is capacity for 
immediate short-term learning and long-term memory, represented in the simple form 
of neural network mapping. 

The knowledge of the trained network is opaque, embedded in its re-formulation of 
internal weights, and can only be ascertained through experimental enquiry. This af-
fords opportunity for creative investigation, but only in the intimate moment of per-
formance itself.  

3.2   Analysis and Learning: P → ƒ 

There are two analysis functions, Ppitch and Paudio. The first focuses on pitch; the im-
plied harmonic characteristics of the improvisation (rather than just step-by-step note 
progression) and executes a harmonic function to extend the characteristics logically, 
providing a related, wider pitch resource. The second analysis, Paudio, is independent 
of this, and measures characteristics of the performance based on various audio de-
scriptors to be used as inputs to the neural network.  

Pitch analysis and generation. Figure 1 shows the pitch analysis function, Ppitch. Au-
dio to pitch conversion produces a stream of data, accurate to the nearest quarter-tone, 
which is filtered by an attentiveness function; the probability that a pitch will be al-
lowed to update the dynamic set Schord, a list of most recently admitted pitches {x0, x1, 
…xn}. In current versions, n = 6. The filter is deployed dynamically, mapped from the 
mean onset density detected over an adjustable time ∆t, so relative inactivity on the 
performer’s part fosters more attentive machine listening. When the primary set Schord 
is updated with a new pitch, a generative function, ƒgen, recalculates ten other hexa-
chords by cross-multiplying each pitch within the primary set. The resultant chords 
are identical, other than in their transposition, and each member of Schord-set contains at 
least one of the pitches from the original hexachord Schord.  

ƒgen: Schord    →    Schord_set 

                                     {x0, x1, …xn} X {x0, x1, …xn}. 
(2) 

This method emulates the post-serial technique of chord multiplication, devised by 
Boulez (as, for example, identified in the ‘L’artisanat Furieux’ cycle of Le Marteau 
sans Maitre [18]). The difference in this instance is that this function continuously 
updates Schord-set in real time as new pitches are admitted. Schord-set is a dynamic pitch 
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corpus, deployed as a resource for the synthesis function Q (explained below). The 
system adapts to the pitch content of the player (who may to decide to opt for a par-
ticular musical approach – e.g. freely atonal, modal etc.), providing a cohesive har-
monic framework that is neutral and apposite to “non-idiomatic” free improvisation, 
as advocated by Bailey [19]. It also creates opacity, due both to the detailed statistical 
filtering of note admission and the complexity of ƒgen itself, offering a challenging but 
comprehensible environment to which the performer in turn may adapt. 

audio pitch detection
{x0, x1,…xn}:

live audio note filter:
attentiveness

Schord

Schord-set

ƒgen

 

Fig. 1. Pitch analysis and ƒgen function 

Audio analysis and training. The second analysis function, shown in figure 2 below, 
applies audio descriptors to the live performance (loudness, brightness, duration be-
tween events, sustained-ness, frequency etc.) with an analysis window of 50ms. It 
creates a dynamic performance state, Saudio, which is a statistical representation of the 
performance behaviour, measured over time, ∆t, comprising the normalised mean ( ) 
and normalised standard deviation (σ) of all the descriptors, where 5s < ∆t > 30s. The 
state Saudio might indicate a musical behaviour as follows:  

• very loud dynamic:  ≈ 1., σ ≈ 0. 
• intermittent bursts of rhythmic activity:  ≈ 0.5, σ ≈ 1. 
• low pitch:  ≈ 0., σ ≈ 0. 

Rather than observing a simple stream of events, the analysis attempts to represent 
a musical behaviour in such broad terms: this is relevant to the exigencies of freely 
improvised music, although the analysis is, in itself, only indicative. It is adaptable 
however, as the individual descriptors in themselves are of less significance than the 
composite representation offered by Saudio. 

The purpose of network A is to classify novel performance behaviours, as repre-
sented by Saudio, in order to acquire a library of learned states for future reference {S0, 
S1, …Sn}. This learning is applied – while the improvisation continues and the net-
work runs – to assess incoming states in comparison to those already known: the aim 
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being to identify musical behaviours that are well defined and contrasting, so the net-
work can respond effectively to a broad range of subsequent musical activity. To 
achieve this, the dynamic state Saudio is considered for retraining only if it satisfies the 
fitness function ƒfit, a measure of the similarity of the current Saudio to all those previ-
ously learned. The function, found through experimentation, is represented as  
co-efficient a, the sum of the mean and standard deviation of the absolute difference 
between the new state under consideration and a previously admitted state. This pro-
duces a list of values, {a0, a1, … an}, where n is the number of already admitted states. 
If any value of a is greater than a predetermined threshold z, the new state is allowed 
to update the network, which is retrained on the fly; otherwise it is discarded. 

ƒfit : Saudio → {a1, a2, … an} > z . (3) 

In the current implementation, the threshold is set by the user; to be effective it must 
adjust to characteristic behaviours of both instrument and performer. The number of 
output nodes increases every time a new state is classified, {O0, O1, …On} represent-
ing an addition to the network’s accumulated learning.  

Saudio audio analysis
{p0, p1,..p12}:

fitness test

ƒfit

library of learned input states
{S0, S1, …Sn}:

output classifications:
{Oo, O1, … On}

network
training

network
running

live audio:

network
A

valid for
training:

{1. 0.} {0. 1.}

 

Fig. 2. Audio analysis and training of network A for classification 
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When the music begins, the network trains several new states, usually within the 
first few seconds. The time interval between retraining then tends to increase, depend-
ing upon the character of the improvisation and the consequent variance of Saudio over 
time. Retraining might be thought of as adaptation, sensitive to the conditions of the 
sonic environment. As the performance develops, new analysis states will approxi-
mate one or, more often, several of those previously obtained. The network is con-
tinually queried to evaluate how far the current state Saudio approximates any of those 
previously learned. For example, if four states have been previously learned, an out-
put response of {0. 1. 0. 0.} would indicate certain recognition of state 2; {0.3 0.7.  
0. 0.} would indicate that relative characteristics of states 1 and 2 are evidenced.  

One limitation of real-time use of the network is that it is “off-line” for this recog-
nition when training is underway. It cannot report on current behaviour and map this 
assessment onwards. The time-period necessary to obtain an acceptable error during 
training increases dramatically as the number of output notes increases. This imposes 
a practical limit of c. 20 output nodes, which results in a maximum of c. 45 seconds 
for real-time training. 

3.3   Maps and Synthesis: ƒ(h) → Q 

Network mapping and synthesis is shown in figure 3 below. A second network (B) is 
deployed, trained in advance to generate synthesis functions Q, in response to ‘ideal’ 
(i.e. very simple) input conditions. The number and meaning of the resultant synthesis 
parameters is specific to each instance of the system: MIDI data for au(or)a and vari-
ous sample playback and modification data for piano_ and cello_prosthesis.  

A second independent network offers several advantages. Firstly, it provides trans-
parency in the classification processes (which would otherwise be embedded within a 
single network).  

More significantly, it allows for covert mapping between networks. The expand-
ing list of outputs (i.e. classifications) from network A , {O0, O1, …On} is mapped via 
the function ƒmap, which randomly re-sorts the indices of the data. This jumbling up of 
output and input nodes provides genuine opacity; it is covert, challenging the player 
to adapt as the system’s behaviour diversifies. The player is invited to attempt to learn 
which performance actions elicit a given response, and even if this is not a simple or 
attainable task, the process itself is closely related to the experience of human-only 
group improvisations.  

Network B creates new input nodes as the list {M0, M1, … Mn} increases, which in 
turn allows the network to access more data from its previously learned set of outputs; 
this library of potential outputs constitutes the ‘knowledge-base’ of the system. It is 
decisive in characterising the music; a framework, a field of relations for aesthetic 
judgement. 

Lastly, network A outputs are mapped with a power function to expand the classi-
fication set, i.e. to converge on the highest result. This becomes more apposite as the 
number of classifications increases. Consequently, network B is more likely to pro-
duce an output with a well-defined profile (as opposed to a more equally-weighted, 
and, amorphous, composite) even if this represents more than one original defined 
state.  
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synthesis parameters
{qo, q1, .. qm}:

output
classifications
{Oo, O1, … On}

ƒmap: input nodes
{Mo, M1, … Mn}

pitch parameters look up

current Schord_set

Qstate parsed as parameter sets for synthesis:

network
B

audio out

 

Fig. 3. Mapping to Network B to create parameters for stochastic synthesis 

Sound synthesis. Sound events are generated stochastically, in a method tolerant to 
the contingencies of the neural network output and complementary to the statistical 
method used for analysis. Stochastic techniques are well established in notated music 
and synthesis [21]; for NN Music, highly complex, mutable musical behaviours can 
be generated from an evolving probability distribution (or ‘parameter profile’) that is 
a composite of well-defined, theoretical, network outputs. As a consequence of this 
approach, and depending on the rate of iteration, the sonic environment can develop a 
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“laminal” (textural) character or be more definitively “atomized” (event-based); codi-
fications of sound established in free improvisation [20]. In the case of _prosthesis, 
sounds may be similar or timbrally distinct to the live instrument due to electronic 
transformation. 

The behaviour of network B is entirely dependent on the classifications made by 
network A as it runs. If a player suggests three previously learned performance states, 
this will be reflected in a composite of three output synthesis states, summed in pro-
portion to the network A output classification.  

The final output of network B is Qstate; a list parsed into subsets according to pa-
rameter type. In figure 3, values for Qstate are shown at a given moment, each subset 
shown as a separate table. (Normally, due to the varying outputs of network B as it 
runs, Qstate is constantly changing). Qstate is then accessed as a probability distribution; 
each time a sound event is triggered, all subsets are invoked to determine the various 
characteristics and modifications of the event. The values indicated by the y axis in 
each subset denote the relative probability of a particular x axis value to be selected. 
Consequently, the network does not directly determine events, but constantly reshapes 
the stochastic distribution of their characteristics.  

For example, musical timing is determined by the first three parameter sets These 
three processes aim to provide a sophisticated rhythmic vocabulary and structural 
syntax akin to those available to an improviser: 

• A geometrically expanding series of 11 values: 53ms – 5311ms  
• The probability of selecting any one of three values for i (stretch factor).  
• The probability that timing will stabilise into a periodic rhythmic pattern. The 

most recent 11 durations are recorded; for every new iteration there is a prob-
ability that these values – or a selected number of them – will be recalled 
rather than fresh values generated, creating a looped rhythm. 

Pitches are determined by two parameter subsets, which are cross-referenced to the 
independent Schord-set corpus:  

• The hexachords from Schord-set available for use.  
• The note position allowed within each hexachord (1 to 6).  

The outcome of the hexachord/note position is then referred to the current Schord-set, 
from which the actual pitch is obtained. These techniques are extended to include a 
range of MIDI data for aur(or)a, and sample playback/transformation data, such as 
filtering, ring modulation and granular synthesis in piano_prosthesis and cello_ pros-
thesis. The Qstate function can easily be generalized for any desired synthesis tech-
nique appropriate to the iterative method used. 

4   Conclusion 

The NN Music system comprises a web of analysis and synthesis functions, linked by 
a number of functional mapping and hidden algorithms, including the principle meth-
ods of unsupervised learning and classification on-the-fly, and covert parameter  
mapping. The modular approach follows the proposed PQƒ model for improvisation 
systems, which indicates how individual components may be replaced, generalised or 
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enhanced without undermining the structure of the whole. The system evidences, to 
some extent, attributes of a ‘live algorithm’: adaptability, empowerment, intimacy and 
opacity – aspiring to unimagined outcomes.  

Future developments will need to address the time-delay problem incurred by on-
the-fly training, and the consequent practical limit on the number of output nodes 
(analysis classifications). Other algorithms, such as k-means clustering, may offer 
more efficient methods for classification. The fitness function, which intercedes in 
network training should ideally be adaptive or unsupervised if the system is autono-
mous and entirely ‘empowered’. Recurrent neural networks may offer new possibili-
ties in bringing together adaptive and creative generative processes. In addition, 
greater insights into the improviser’s performance, at appropriate structural levels 
would provide better material for network training, and impact on the responses of the 
system as a whole 

The ultimate aim is to provide a stimulating and challenging environment for im-
provisers, which examines the liminal space between composition (intentional de-
signs) and improvisation (collaborative or intuitive actions) in a musically convincing 
way. Artificial intelligence and learning offer great potential for further creative ex-
ploration of this. 
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