
R. Kronland-Martinet, S. Ystad, and K. Jensen (Eds.): CMMR 2007, LNCS 4969, pp. 360–367, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Musical Framework with Swarming Robots 

Yuta Uozumi, Masato Takahashi, and Ryoho Kobayashi 

Graduate School of Media and Governace, Keio University, Japan 
{isana137, masatooo, ryoho}@sfc.keio.ac.jp 

http://www.csp.sfc.keio.ac.jp  

Abstract. In this paper, we describe an approach to a musical framework  
with interactions among numerous physical autonomous devices. The devices  
behave as metaphors of life and self-organize sounds and rhythm. Users can 
manipulate the system by affecting the interactions of the devices. We imple-
mented the system as two different installations. 

Keywords: Swarming Robotics, Multi Agent System, Self-organize, Swarming 
Instruments, Musical Controller. 

1   Introduction 

This system is implemented as a sound-installation, which generates sounds through 
interactions among swarm robots. Various models for swarm robots have already been 
proposed [1]. Almost all of them have been focused on how to play musical instru-
ments using robots. However, the model proposed here is unique in that it is focused 
on the generation of musical structures through the interactions of autonomous, swarm-
ing robots [2]. The robots are called “agent-robots”. The agent-robots behave as meta-
phors of actual lives. They were developed in the image of insects. They have insect-
like shapes and, like insects, they swarm to seek food. Therefore each agent has a mi-
crocontroller and sensors mounted on it. The agents are programmed to seek, chase 
and eat food. Their food is light, which they seek with their sensors. If they find light, 
they move to eat it. An LED flashes on the agent’s body when it is eating. The LED’s 
color and position are tracked by a CCD-camera that is mounted on the overhead. The 
sound generator on an external PC generates sounds based on the information. 

Users can give the agents light as food. When users place red paste or red LEGO 
blocks on a scan-board, these shapes of those items are displayed as LCD light below 
the agents. The agents eat the light when they find it. They also interact with each 
other. In response, the agents self-organize [3] rhythm and pitch. Six agent-robots are 
employed in this system.1 

2   System 

The system consists of four sections as follows (Figure 1) 

A: Insect type agent robot 
B: Human interface 

                                                           
1 Please refer the demo movie online. http://www.mag.keio.ac.jp/~isana137/bd/Demo.htm 



 A Musical Framework with Swarming Robots 361 

C: Tracking system with overhead camera 
D: Sound generator 

2.1   Insect Type Agent Robot 

The agent robot is mounted a microcontroller and sensors. It is programmed to seek 
light. Light is food for the agents. Agents react to light on LCD (See Fig.1-B1) and in 
the environment. If an agent finds a light, it chases the light to eat.  When the agent 
chases a light, an LED on its body flashes its predefined color. The LED color and 
position are utilized in the tracking system (See Fig.1-C). The tracking system is de-
scribed later. Six agents are employed in this installation. 

2.2   Human Interface 

A scan-board2 is set in front of the user (See Fig.1-B3). The board is captured by a 
USB camera (See Fig.1-B2). A user places red paste or red LEGO blocks on the 
board, and then the shapes are expressed below the agents as LCD3 light (See Fig.1-
B1). If the agents locate the light, they chase it to eat it. During this process, these 
insect type robots repeat flashing their LEDs. The flashes are utilized for generation 
of rhythm and pitch.  

2.3   Tracking System with an Overhead Camera 

The overhead camera  tracks the movements of the agents. It detects the color and 
position of the LEDs flashed by the agents. The tracking system sends the detected 
information to a sound generator (See Fig.1-D). 

 

Fig. 1. System Overview 

                                                           
2 The scan-board size: Width: 300mm Depth: 210mm. 
3 The LCD size: Width: 930mm Depth: 520mm. 



362 Y. Uozumi, M. Takahashi, and R. Kobayashi 

2.4   Sound Generator 

The sound generator plays sounds in accordance with signals from the tracking sys-
tem (see above section 2.3).  

The agents have sexuality. Male agents emit LEDs with blue color when they are 
eating light. On the contrary, female agents emit LEDs with red color when eating. 
The blue lights are utilized for rhythm. The sight, which is viewed through an over-
head camera, is separated to multiple grids by the system. The sound generator plays 
predefined sounds based on the grid where the blue flash is detected. If the system 
detects a red flash, it plays low-frequency sounds depending on x-axis value of the 
position. An agent has a built-in contact microphone. It plays physical noises of motor 
and scratch. These sounds are processed as effect source by the sound generator. 

3   Agent-Robot 

The agent-robot is the most important component of the system. Commonly, most 
devices for sound control run individually and statically. However in the proposed 
system, the physical components swarm and interact with each other as agents. In this 
section, we see the implementation of the agent-robots. 

3.1   Architecture of an Agent-Robot 

An agent-robot consists of the following components (see Fig.2). 

A. Micro Controller 
Each agent-robot has a micro controller for autonomous control. The controller can 
process multiple outputs and inputs, which are digital or analog signals. It is made by 
AVR Inc. Plural sensors and motors are connected to it. 

B. Cadmium Sulfide (CDS) sensor 
Two CDS sensors are mounted on each agent-robot. They detect the intensity of lights 
on the left and right in front of each agent. The difference of light intensities between 
left and right decides the direction of each agent's movement. 

C. Infrared (IR) sensor 
An IR sensor is employed to detect barriers in front of each agent. If the sensor de-
tects barriers 2 or 3 centimeters ahead, it notifies the Micro Controller. 

D. Motor 
Two motors are incorporated into each agent-robot for its moving. The drive power of 
each motor is decided based on the difference between the values of the two CDS 
sensors. 

E. LED 
Each agent-robot has a LED. It can emit three colors simultaneously. According to the 
combination of the three colors, it generates multiple colors. An agent flashes the 
LED with red or green or blue color based on the agent's condition for generating 
sounds. It normally flashes an LED with green color. 



 A Musical Framework with Swarming Robots 363 

 

Fig. 2. Architecture of an agent-robot 

3.2   Algorithm of the Agent-Robots 

The algorithm of the agent robots is as follows. 

1. An agent sets the light intensity of the environment as initial value when the power 
is on. 

2. At first, the agent moves slowly to seek light. The direction of movement changes 
at random. 

3. If the agent detects light intensity larger than the initial light value, it moves in that 
direction. 

4. When the agent loses track of the light intensity, it goes back slightly because it 
has passed over the light below. Through the repetition of this process, eating be-
havior emerges. 

5. If an agent detects a barrier, it changes direction of movement to the left or right at 
random.  

The algorithm is simple, however, complex interactions emerge from it. They are 
behaviors like scrambling for foods or yielding them according to the user's feed.   

4   Results of the First Implementation 

A lot of physical interfaces, which correspond to user's input directly, already exist. 
These linear interfaces often run statically. However, this project approached an inter-
face model by which the user affects interactions between plural physical autonomous 
devices. This interface is dynamic. If we adopt a new specification for a model like 
this, anyone can put in a newly designed agent based on the specification. Then the 
interface's behavior might change dramatically.  

The project has many future works such as how to balance between control and out 
of control, how to stimulate meaningful self-organization and how to develop more 
optimized models for musical purposes. 



364 Y. Uozumi, M. Takahashi, and R. Kobayashi 

5   Attempt of Autonomous Musical Generation for an Installation 

In addition, we attempt to implement a system that generates musical patterns 
autonomously based on the proposed framework. The system was updated for it. 

It was implemented as a next step of our installation-project, named “musicalBox”.4 

5.1   Concepts 

The idea of the implementation was inspired by a concept of autopoiesis（Maturana, 
Varela, 1980）[4]. It was designed to exhibit as an installation. An autopoietic system 
continues to behave evolutionarily, even if there is no external signal. This is because 
it can generate signals by itself.  

In the proposed system, the input was changed from feed by users to environmental 
sound. This generates new musical-evolutions through agent-robots' interactions ac-
cording to their own self-organized and/or environmental sounds. The generated 
sounds brew up the next interactions of agent-robots. In such a system which includes 
feedback, nonlinear components are needed to obtain interesting behaviors. There-
fore, the sound component of a system is changed from digital sound-synthesis to 
playing the physical piano. This can enhance the dynamic behavior of the system be-
cause such feedbacks from physical-components take in errors and environmental 
noises or reverberation of the space. 

In addition, agent-robots are mounted a communication system to aid of interac-
tions among agent-robots. 

5.2   System Overview 

In this section, we see embodiment of the system. 

5.2.1   Feedback System 
Interaction source for agents is changed from feed via users to feedback of environ-
mental sounds (see Fig.3). The feedback system is implemented to always analyze the 
pitch and amplitude of the environmental sounds. If the system detects a sound which 
has certain amplitude, the system displays lights below the agent-robots, based on the 
frequency and amplitude of the detected sound. An agent-robot flashes a LED on its 
body when eating the lights (Section 3.1E). The flashes are detected by the system. 
The system drives piano-actuators according to the detection with predefined rules. 
Consequently, the flashes are transformed to piano playing. The lights below the 
agent-robots and piano playing form recursive-loops via the interactions of the agents.  

5.2.2   Implementation of Playing the Piano 
Eight notes are utilized to play the piano. These notes are selected carefully to accord 
with the atmosphere of installation by the author (see Fig.4). Therefore, when the 
notes are played asynchronously by the agent-robots, the sounds can keep the image  

                                                           
4 Please refer to the demo to observe agents’ behavior of this implementation. 

http://www.mag.keio.ac.jp/~isana137/dock/icmc07/ 



 A Musical Framework with Swarming Robots 365 

 

 

Fig. 3. Diagram of secnd implementation 

of the installation. The keyboards corresponding to each note are assigned actuators 
(Section 5.3.2), and are pressed by the system with the actuators. Two types agent-
robots, male and female, exist. They flash LEDs based on their sex and predefined 
algorithm (Section 2.4). If the male agent-robot flashes a blue light, from its LED, a 
note is selected according to the position, and is played. When the female agent-robot 
flashes a red light from its LED, a simple motif consisting of the eight notes is played 
according to the detected position. 

In consequence, the system generates music which has a fluctuation structure. 

5.3   Added Components of the System 

Added components for the autonomous system are as follows: 

5.3.1   Communication System of Agent-Robots 
Agent-robots are modified to communicate with each other. The communication sys-
tem was implemented with infrared radiation (IR). Agent-robots are programmed to 
chase away neighbor agent-robots of the same sex when detected. On the contrary, 
when the neighbor agent-robot encounters one of the opposite sex, it performs court-
ship dance. If other agents come to the pair of agents, they perform the dance too. 
Consequently, the courtship dance has contagiousness. 
 



366 Y. Uozumi, M. Takahashi, and R. Kobayashi 

The communication algorithm is as follows: 

1. An agent-robot always transmits signal code-"A", which indicates its existence. 
2. If another agent detects the signal code-A, it transmits signal code-"B", which in-

dicates its own sex. 
3. The agent-robot which received code-B, compares its sex with the other. In the 

same sex case, it performs intimidation behaviors and transmits intimidation sig-
nal codes (signal code-"C1"). In the opposite sex case, it performs a courtship 
dance and transmits courtship-signal codes (signal code-"C2"). 

4. The other agent which received code-C1 (intimidation-signal) backs away to es-
cape. On the contrary, if it receives code-C2 (courtship-signal), it performs a 
courtship dance and transmits signal code-C2 again. The courtship dance will be 
continued until each courtship-signal is obstructed by other agent-robots. 

 
Fig. 4. Selected notes 

5.3.2   Piano Actuator 
A physical instrument (piano) was utilized to generate sounds in this system. It builds 
up non-linear attributes and impact for the installation. Eight actuators are utilized to 
play the piano (see Fig.5). To control them, an I-CubeX5 was utilized. 

 

Fig. 5. Piano actuators 

                                                           
5 The I-CubeX is a universal interface to control actuators and sensors with MIDI, Bluetooth or 

USB connection. http://infusionsystems.com 



 A Musical Framework with Swarming Robots 367 

All actuators are designed to push each specific keyboard with its arm according to 
the control signal.  The system sends the control signal to the actuators based on 
LEDs flashing on the agent-robots. In consequence, the piano is played. The system 
generates melody and rhythm. 

6   Conclusions 

We have presented a musical framework with interactions among plural physical 
autonomous devices via two different installations. 

The results of the second implementation attempting to generate music autono-
mously is as follows: 

Firstly, the implementation could obtain more impact through the utilization of a 
traditional and physical instrument. Secondly, the agent-robots generated and evolved 
music through their interactions and the feedback system. Thirdly, dynamic attributes 
existed, in which sounds were sometimes very few and sometimes plentiful. Finally, 
the attribute occasionally caused out of control as a sound installation. However, it 
can generate fluctuation which is very musical, according to circumstances. We will 
develop a method of control via each agents behavior. 

In addition, there are many future works. First, We have to search for a battery 
which has a longer operating life. In the present version, the duration of activity for 
agent-robots is only 30 minutes. Second, there is the possibility of behavior evolution 
for agent-robots with GA or GP. It can realize advanced self-organizing of music in 
this framework. Finally, it is third implementation task with the framework for more 
practical purposes such as musical-controller or self-organizing instruments with 
swarming components. 

References 

[1] Kapur, A.: A History Of Robotic Musical Instruments. In: Proc. ICMC 2007, September 
2005, pp. 21–28 (2005) 

[2] Sahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. In: 
Swarm Robotics SAB 2004 International Workshop, July 17, pp. 10–20 (2004) 

[3] Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and 
Complexity. Oxford University Press, New York (1997) 

[4] Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: the Ralization of the Living. D. 
Reidel Publishing Co., Dordrecht (1980) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


