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Listening tests like dissimilarity tests are traditionally used to study sound perception and build perceptive timbre 
spaces. As the processing of such tests is tedious when a large number of sounds are to be judged, this work proposes a 
method  to  automatically  compute  the  dissimilarity  between  sounds  by  combining  an  auditory  representation,  the 
cochleagram,  and the  concept  of  time-frequency masks.  The cochleagram gives  an energy distribution  in  a  time-
frequency space which can be considered as a perceptive sound representation. By introducing auditory representations 
in time-frequency analysis, we wish to propose new tools to characterize timbre. Time-frequency masks that carry  
information about the time-frequency differences between two signals applied to auditory representations might lead to  
global timbre descriptors that, as opposed to most traditional timbre descriptors, also are adapted to signals that strongly 
evolve with time. In this study we applied the proposed method to engine sounds that are complex and rich signals whose  
perception strongly depends on the dynamic sound variation. In order to evaluate the robustness of our model, we compared  
the timbre space obtained with perceptive tests to the one generated by our proposed method.

INTRODUCTION
Perceptive  description  of  interior  car  sounds  is  an 
important challenge for car manufacturers because such 
sounds influence the identity and the perceived quality 
of the car. Acousticians can indeed conceive and design 
sporty engine sounds in order to increase the sensation 
of acceleration. Perceptive studies are therefore carried 
out to evaluate such sounds and to identify perceptually 
relevant  signal  parameters.  The identification of  these 
parameters is essential to conceive specific car sounds 
that improve the impression of the car. 

Sounds perceived in car passenger compartments are the 
result of three acoustic sources: the engine sound, the 
tire-road  source  and  the  aerodynamic  source.  The 
resulting  signal  is  therefore  a  mixture  of  several 
harmonics and a low-frequency broad band noise. The 
engine sound is a complex sound rich in overtones. Its 
fundamental  frequency varies with the engine rotation 
speed, and the level of each harmonic depends on the 
multiple resonances inside the car. In addition, masking 
phenomena [1] must be considered to identify audible 
harmonics in the noise. 

The  main  dimension  that  characterizes  interior  car 
sounds  is  the  audibility  of  engine  sound,  which  is 
mainly  correlated  to  the  engine  sound  loudness  [2]. 
When the engine sound is sufficiently audible in the car, 
it  can  be  described  by  perceptual  attributes  such  as 
booming,  brightness  and  roughness.  Booming  is 

associated with a resonant low-frequency harmonic and 
can  be  considered  as  annoying  for  the  driver  [3]. 
Increased  brightness  reflects  the  presence  of  audible 
high-order  harmonics,  while  increased  roughness 
reflects audible secondary harmonics that interact with 
the  main  harmonics.  Although  these  perceptual 
attributes  can  be  clearly  identified  at  a  given  instant, 
they fail to properly characterize the dynamic variation 
of  the  car  sounds,  for  instance  during  acceleration. 
Timbre descriptors that take into account both time and 
frequency variations are needed for this purpose. 

As a first approach we therefore propose to work with 
the so-called cochleagram [6] which corresponds to the 
output of an auditory model [5] based on physiological 
studies  of  the  ear.  The  cochleagram  displays  the 
perceived  energy  distribution  of  a  sound  in  a  time-
frequency  space  and  enables  the  identification  of 
audible signal components. Applied to an engine sound, 
the  cochleagram  shows  the  engine  harmonics  that 
contribute to the perceptive attributes of the sound [7]. 
In this study we show that working with time-frequency 
images makes it possible to take into account the signal 
features  (brightness,  roughness…)  and their  evolution 
over time, which is an important perceptual cue of non 
stationary signals such as interior car sounds. 
A major question that occurs when working with global 
timbre attributes is how such perceptually relevant time-
frequency  representations  further  can  be  used  to 
compare  and  categorize  different  engine  sounds.  In 
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traditional timbre studies, listening tests are carried out 
to  obtain  dissimilarity  judgements  between  pairs  of 
sounds.  Dissimilarity  scores  are  then  placed  in  a 
dissimilarity matrix which is used in a Multidimensional 
Scaling  (MDS)  representation  to  obtain  a  perceptive 
space.  Generally,  2  or  3  dimensions  are  enough  to 
describe  the  perception  and  to  give  a  visual 
representation. 

It could therefore be interesting to extract dissimilarity 
ratings  directly  from  our  perceptually  relevant  time-
frequency representations. This would give us a global 
time-frequency  representation  of  the  dissimilarity 
between two sounds  and  enable  us  to  avoid  listening 
tests that  require a lot  of time and a large number of 
sounds.  Such  a  strategy  was  applied  for  the 
characterisation  of  loudspeakers  by  considering 
Zwicker’s  mean  specific  loudness  as  a  perceptive 
descriptor [4]. To estimate the difference between two 
time-frequency  images,  we  here  propose  to  use  the 
concept of time-frequency mask (or Gabor masks). 

A Gabor mask between two signals carries information 
about the time-frequency differences between these two 
signals  and  can  be  considered  as  a  time-frequency 
transfer function. Gabor masks were used in [8,  9] to 
compare  isolated  notes  of  musical  instrument.  By 
averaging the energy contained in the Gabor mask, the 
authors  in  [8]  obtained  a  measure  of  the  difference 
between  the  time-frequency  representations  of  two 
sounds,  and  they  showed  that  this  difference  was 
sufficient to perform a good categorization of different 
musical  instruments  playing  the  same  note.  In  the 
present  context,  we  propose  to  add  perceptual 
considerations to  this approach by replacing the time-
frequency  representations  by  cochleagrams,  and 
calculating  a  mask  between  cochleagrams,  hereafter 
called the auditory mask. An auditory mask will  then 
contain  time-frequency  information  related  to  the 
perceptive differences between two sounds. In addition, 
it corresponds to a global timbre description because it 
contains the whole perceptual information. We make the 
hypothesis that an auditory mask provides good results 
in a categorization task of interior car sounds, and can 
also be used to predict a perceptive space. 

We  first  explain  the  construction  of  our  prediction 
model, by describing the auditory representation and the 
dissimilarity  estimation  derived  from  the  auditory 
masks.  Then,  we  apply  this  method  to  synthesized 
engine  sounds  obtained  with  the  so-called  HARTIS 
synthesizer  [10]  developed  at  Peugeot-Citroen,  and 
engine  sounds  recorded  in  different  cars.  Finally,  in 
order  to  evaluate  the  robustness  of  our  model,  we 
compare the timbre space obtained with perceptive tests 
to the one generated by our proposed method. 

1 DISSIMILARITY TEST MODELLING
The dissimilarity test model is constructed by evaluating 
the information contained in the auditory mask of each 
couple of sounds. We derive an auditory mask from the 
cochleagrams by mimicking the formulation of a time-
frequency  mask.  Then,  this  auditory  mask  is  used  to 
measure the dissimilarity between sounds, by properly 
averaging its time-frequency information.

1.1 Auditory representation
An  auditory  model  simulates  different  stages  of  our 
peripheral  auditory  system.  The  transfer  function  of 
sounds  through  the  outer  and  middle  ear  can  be 
modelled using a single FIR filter [11]. The output of 
the filter  can be considered  as symbolizing the  sound 
reaching the cochlea. The cochlea can be described as a 
bank of  4th  order  linear  gammatone  filters  [12].  The 
frequencies of the auditory filterbank are linearly spaced 
on  the  so  called  ERB  (Equivalent  Rectangular 
Bandwidth) frequency scale.  The step size determines 
the density of the filters on the ERB scale. We chose a 
step  size  of  0.1  ERB and  we  considered  frequencies 
between 50 and 1200 Hz, so that 152 auditory bins were 
described. The next stage was the modelling of the inner 
cells [13] by a half-wave rectification followed by a low 
pass filter with a 50Hz cut-off frequency. We added a 
compression  model  with  a  power  law  (order  0.3)  to 
model the non-linearity of the ear [14]. The output of 
our model can be viewed as the cochleagram defined by 
Slaney  et  al.  [6]  and  gives  a  representation  of  the 
perceived energy in the time-frequency domain.

1.2 The auditory mask
We here recall the estimation problem of a Gabor mask, 
from which  we derive  an  expression  for  the  auditory 
mask.  Time-frequency  representations  are  invertible 
signal representations. More precisely, they are images 
of complex numbers  containing particular  correlations 
between their coefficients, and are used in the context of 
analysis/synthesis  of  signals.  A  time-frequency 
multiplier  acts  on  a  signal  by  multiplying  its  time-
frequency representation with a time-frequency transfer 
function, called the Gabor mask. As studied in [15], a 
Gabor mask can be estimated between two signals, and 
is  given  as  the  solution  of  a  regularized  least-square 
problem in the signal domain. This problem is difficult 
to handle and can be simplified, when we assume that 
the time-frequency coefficients are independent. 

This also leads to an expression of the problem in the 
Gabor  domain,  where  a  Gabor  mask  is  defined  as 
follows: 

 m )1+(minarg=
2

2

2

21
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where  Xi is  the  time-frequency  representation  of  the 
signal  xi, λ is  a  regularization  parameter,  and  the 
multiplication  mX0 is performed component-wise. The 
parameter  λ prevents  from the  division  by  zero,  and 
controls  the  deviation  from  1  of  the  Gabor  mask 
coefficients,  as  the  value  1  corresponds  to  “no 
transformation”.  By  differentiating  Equation  (1)  with 
respect  to  the  modulus  and  the  argument  of  m,  the 
solution is obviously obtained as

m )arg(
2
0

01)1,0( 10

+

+
= XXi

Gabor e
λS

λSS
             (2) 

where Si is the modulus of Xi, and multiplications and 
divisions  are  performed  component-wise.  The  Gabor 
mask is a complex matrix and can be used to reconstruct 
x1 from  the  time-frequency  matrix  mX0,  for  a  well-
chosen value of  λ (small comparing to S0²).

The auditory mask is obtained by mimicking the Gabor 
mask modulus defined by Equation 2. If C0 and C1 are 
the  cochleagrams  corresponding  respectively  to  the 
signals x0 and x1, we define an auditory mask between x0 

and x1 as:

m
λC

λCC
Auditory +

+
= 2

0

01)1,0(                  (3) 

In this work, we chose λ = 10-12. It is worth noticing that 
a  mask  is  a  time-frequency  matrix,  and  the  more  its 
coefficients  deviate  from 1,  the  more  the  signals  are 
different.  Therefore,  in order to capture relevant time-
frequency information, the two signals must be aligned 
in the time-frequency domain. Indeed, a time-frequency 
shift between C0 and C1 will generate large values in the 
Gabor  mask,  which  are  not  relevant  in  a  timbre 
categorization  task.  As  we  want  to  describe  subtle 
differences  between  two  signals,  we  consider  signals 
with  the  same  length  and  the  same  fundamental 
frequency variation over time. A processing [16] can be 
applied  to  sounds  which  do  not  respect  the  temporal 
condition. Nevertheless, we assume that our method can 
be  only  applied  to  real-life  sounds  with  the  same 
fundamental frequency.
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Figure 1: Impact on the cochleagram of phase shift 
between three beating engine harmonics. First and third 
harmonics are in phase while second harmonic is phase 

shifted. Cochleagram are show for different shift.

In addition, a phase shift between signal harmonics can 
be visualized on the cochleagram [17]. In the case of 
beating  harmonics,  the  perceived  energy  modulation 
associated  to  roughness  depends  on  this  phase  shift. 
Given a harmonic signal, the same signal with different 
phase shifts for its harmonics will sound as rough as the 
initial one (see Fig. 1). However, on the cochleagrams, 
the dips and the peaks will  not  coincide due to  these 
phase shifts. In this situation, the auditory mask between 
these two signals will deviate from the unity mask while 
the signals sound the same. We propose to estimate a 
phase shift between each bin of the two cochleagrams 
by  maximizing  the  correlation  product.  We also  built 
two  new  cochleagrams  whose  perceived  energy 
modulation  matches.  Finally,  the  cochleagrams  are 
adjusted so that peaks and dips coincide. 

1.3 Perceptive space modeling 
As  the  auditory  mask  contains  a  time-frequency 
information of the dissimilarity between x1 and x0, the 
Euclidean norm ||m(0,1)-1|| will give us a global measure 
of the dissimilarity between the two signals. However, it 
has been showed in [8] that the following symmetrised 
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Itakura-Saito divergence between the mask and 1 gives 
better results. This divergence is obtained as:

]2loglog+[
2

1
=

1

)0,1(

1

)1,0(

1

)0,1(

1

)1,0()1,0( -m-m-mmd  

(4)

We can assume that the presence of the logarithm in the 
divergence  makes it  possible  to  take  into account  the 
logarithmic perception of the intensity of sounds.

In  our  experiments,  we  considered  N  interior  car 
sounds,  computed  an  auditory  mask  for  each  pair  of 
signals,  adjusted  their  phase  shift,  and  derived  a 
measure  of  the  dissimilarity  between  sounds  with 
Equation 4. Finally, we obtained a dissimilarity matrix 
for  the  N  sounds.  Then,  a  multidimensional  scaling 
representation  was  obtained  from  the  dissimilarity 
matrix,  and  compared  with  the  perspective  space 
obtained by listening experiments.  This comparison is 
described hereafter.

1.4 Robustness evaluation method
We  propose  to  evaluate  the  robustness  of  the 
dissimilarity  model  by  comparing  the  results  of  our 
estimation  with  the  results  of  a  listening  test.  A 
procrustean  analysis  allows  for  comparisons  between 
these two spaces by finding the best way to match the 
two spaces only with geometrical transformations. The 
matching  error  is  computed  with  a  goodness  of  fit 
indicator (also called the Procrustes distance),  defined 
as the squared Euclidian distance between the positions 
of  each  point  in  the  two  spaces.  The  lower  is  the 
goodness of fit; the better is the matching between the 
two spaces.

2 APPLICATION  TO  ENGINE  SOUND 
CARACTERIZATION

We applied this method to interior car sounds because 
their  fundamental  frequency evolves slowly over time 
and  their  harmonics  level  varies  over  time.  Timbre 
descriptors  built  on  stationary  sounds fail  to  predict 
engine sound perception. We considered two kinds of 
sounds: synthesized sounds whose perceptive attributes 
are  well  controlled,  and  recorded  sounds  from  12 
different accelerating cars.

2.1 Stimuli

2.1.1 Synthesized sound

12  interior  car  sounds  were  synthesized  with  the 
HARTIS  engine  synthesizer  used  at  PSA  Peugeot 
Citroën. This software allows a real time control of the 
perceptive  parameters.  4  brightness  levels  and  3 
roughness levels were used to create 12 stimuli with a 
factorial  experimental  design.  The  duration  of  each 

sound  was  fixed  to  1.7  seconds,  and  each  sound 
corresponded  to  an  accelerating  car  with  a  rotation 
speed variation from 3000 to 4500 rotations per minute. 
These sounds were equalized in loudness during a pre-
test.  Then,  they  were evaluated  during a dissimilarity 
test  by  55  subjects.  These  dissimilarity  ratings  were 
finally used to obtain a 2-dimensional perceptive space 
of  these  sounds,  where  the  perceived  dimensions 
corresponded to the brightness, and the the roughness.

2.1.2 Recorded sounds

Interior car sounds are recorded with a dummy head in 
12  cars  from  different  manufacturers  during 
acceleration.  We  only  conserved  the  part  of  the 
acceleration  corresponding  to  a  motor  rotation  speed 
between  3500  and  4300  rotations  per  minute.  The 
sounds were scaled in time and lasted for 2 seconds. In 
addition, they all had the same rotation speed variation 
over time.

These sounds were perceptually evaluated by a sensory 
panel [18] made of trained subjects who first proposed 
sensory  descriptors  revealed  by  onomatopoeia  to 
describe  sounds.  In  our  case,  9  onomatopoeia  were 
found  to  describe  the  different  noises  perceived  in 
interior  car:  descriptors  for  engine  sound  (e.g.  “ON” 
associated to the sound booming and “REU”, associated 
to  the  sound  roughness),  descriptors  for  aerodynamic 
sound (e.g. “FF” and “SHH”) and descriptor for their 
dynamic  evolution  and  their  interaction.  Then  they 
proposed a scaling for each descriptor. The panel finally 
gave an evaluation of 12 sounds on each descriptor and 
a perspective space was built from this description with 
a  factor  analysis.  The  2  main  dimensions  were  the 
descriptor  “ON”  (sound  booming)  and  REU  (sound 
roughness).

2.2 Pre-results  on  engine  sound  perception  with 
cochleagram

We here describe the main results obtained by applying 
our  auditory  model  on  these  interior  car  sounds  [7]. 
First,  on  Figure  2,  the  cochleagram  mainly  shows 
audible engine harmonics,  as masking phenomena are 
taken into account in the auditory model. Secondly, the 
engine  roughness  is  clearly  observed  on  the 
cochleagram,  by  the  presence  of  an  amplitude 
modulation that  we call  the  “cochleagram beat”.  This 
amplitude  modulation  allows  us  to  identify  the 
interaction between the harmonics, which is responsible 
for the roughness perceived in these sounds. These beats 
clearly appear on Figure 1 and their beating frequency 
equals the frequency of the amplitude modulation. By 
comparing  to  the  listening  test,  the  more  the  beat  is 
important, the rougher the engine sound is. Indeed, the 
amplitude modulation is directly correlated to perceived 
roughness  [19].  Thirdly,  as  the  cochleagram  is  a 
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perceived  energy  representation,  we  can  derive  a 
brightness evolution over time. 
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Figure 2: Spectrogram (on the top) and Cochleagram 
(on the bottom) of an engine sound recorded in an 

interior car. The beats associated with the roughness are 
encircled in dash-line on cochleagram.

This kind of representation is really useful in the case of 
engine sounds as it allows us to identify the perceptive 
relevance between the signals components. Furthermore 
this representation reduces the information quantity, as 
the non-audible components are not considered.  

2.3 Results on the perceptive space prediction

2.3.1 Synthesized sound

A listening  test  is  carried  out  to  obtain  dissimilarity 
judgements  between  pairs  of  sounds.  An  MDS  is 
applied on the dissimilarity matrix to obtain a perceptive 
space.  The  two  perceptual  axes  correspond  to  the 
synthesis parameter (brightness and roughness). Results 
are plotted in Figure 3. The perspective space computed 
with  the  Gabor  mask is  compared  with the  reference 
space  in  the  upper  part  of  the  figure,  whereas  the 
perspective space computed with the Auditory mask is 
compared with the reference space I in the lower part of 
the figure. In each case, the two spaces are scaled with a 

procrustean analysis.  Table 1 gives the goodness of fit 
issued from this analysis.  It  also gives the correlation 
product  between the coordinates in each point  for the 
two dimensions. 
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Figure 3: Comparison between the perspective space 
obtained from listening tests (reference space) and the 

perspective space computed with the Gabor mask 
(upper part of the figure), and the one computed with 

the Auditory mask (lower part of the figure).

Gabor  mask Auditory mask
Goodness of fit 0,21 0,14
Correlation (Dim 1) R² = 0,93 R² = 0,98
Correlation (Dim 2) R² = 0,79 R² = 0,82

Table 1: Goodness of fit obtained from procrustean 
analysis and the correlation coefficients between the 

reference space and the models.
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2.3.2 Recorded sound

Results are plotted in Figure 4. The two perceptual axes 
are  obtained  from a  factor  analysis  computed  on  the 
descriptor issued from sensory analysis. The perceptive 
space computed with the Gabor mask is compared with 
the  reference  space  in  the  upper  part  of  the  figure, 
whereas  the  perspective  space  computed  with  the 
Auditory mask is compared with the reference space in 
the lower part of the figure. In each case, the two spaces 
are scaled with a procrustean analysis.. Table 2 gives the 
goodness of fit issued from this analysis. It also gives 
the  correlation  product  between  coordinates  in  each 
point for the two dimensions. 

-1 0 1
-1

0

1

01

02

03
04

05

06

07

08

09

10

11

12

Gabor Mask (  ) vs Reference ( * )

01

02

03

04
05

06

07

08 09 10

11

12

dim 1(booming)

di
m

2 
(r

ou
gh

ne
ss

)

-1 0 1
-1

0

1

01

02

03 04

05

06

07

08

09

10

11

12

Auditory Mask ( o ) vs. Reference ( * )

01

02

03

04

05

06

07

08

09

10

11

12

dim 1 (booming)

di
m

 2
 (

ro
ug

hn
es

s)
 

Figure 4: Comparison between the perspective space 
issued form listening (Reference) and the perspective 
space computed with Gabor mask (upper part of the 

figure) and with auditory mask (lower part of the 
figure).

Gabor  mask Auditory mask
Goodness of fit 0,91 0,73

Correlation (Dim 1) R² = 0,29 R² = 0,64
Correlation (Dim 2) R² = 0,31 R² = 0,46

Table 2: Goodness of fit obtained from procrustean 
analysis and the correlation coefficients between the 

reference space and the models.

3 DISCUSSION
For the two sets of sounds, the matching between the 
reference space and the estimated space is better  with 
the  auditory  mask  than  with  the  Gabor  mask.  The 
goodness  of  fit  associated  with  the  matching  error  is 
lower in both experiments for the auditory mask. Theses 
results confirm the interest of considering a perceived 
time-frequency  representation  to  capture  a  realistic 
dissimilarity between sounds. The perceptive attributes 
like booming or brightness are better modelled. We also 
observe  that,  when  the  auditory  mask  is  used,  the 
correlation between space dimensions is higher for the 
booming (with the measured sounds) and the brightness 
(with  the synthesized sounds).  Roughness  is  indeed  a 
perceptive  attribute  whose  characterization  is  still 
debated  [20],  especially  the  different  ways  to  sum 
partial  roughness issued  from the auditory  filters  (the 
cochleagram  rows)  to  estimate  a  global  roughness. 
Partial  roughness  have  indeed  to  be  weighted  and 
summed [21]. Each cochleagram row is considered as 
the auditory filter output and the amplitude modulation 
can  be  considered  as  the  partial  roughness.  In  our 
method, we didn’t consider weighting functions and we 
only compared partial roughness. This might explain the 
lack  of  precision  when  we  compare  sounds  on  this 
perceptive dimension. These weighting functions could 
be integrated in the mask measure defined by equation 
(4) in order to improve our method. 

In  addition,  we  can  notice  that  results  are  better  for 
synthesized sounds than for measured sounds. This is 
not  surprising,  as  the  synthesized  sounds  were 
constructed  to  match  two  particular  perceptive 
dimensions.  A common way to decide  the number  of 
perceptual  dimensions that  should be considered is to 
use  the  MDS  Kruskal  stress  value.  For  synthesised 
sounds, the stress  values confirm that two dimensions 
are  sufficient  to  describe  their  perception.  Oppositely, 
the  recorded  sounds  are  more  rich  and  complex,  and 
should  be  described  by  more  than  two  perceptive 
dimensions.   The sensory  analysis  used  to  obtain  the 
perceptive  space  of  the  recorded  sounds  revealed  9 
relevant  descriptors.  A  principal  component  analysis 
shows  that  3  dimension  (ON,  REU  +  an  other 
dimensions describing brightness evolution over time) 
contains 80% of perceptive information. Here, we only 
consider the two most relevant dimensions to describe 
the perceptive space. A better match might have been 
obtained by comparing N dimensional perceptive spaces 
(N  >2).  Moreover,  we  computed  our  method  by 
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considering the entire signal. For both test, the sounds 
lasted for 2 seconds. But during listening tests, subjects 
often concentrate their attention on the last seconds of 
the  sound  to  evaluate  it  [22].  That’s  why,  we  also 
computed  our  method  by  considering  only  the  last 
seconds of  the signal,  but  we observed  no noticeable 
improvement

In  our  method,  we  point  out  the  importance  of 
cochleagram phases  and  propose  a  method to  correct 
phase  shift  and  scale  cochleagram  in  phase.  As  the 
correlation  product  is  computed  on  the  whole  signal 
length, we supposed constant phase shift over time. This 
approximation is still  valid in the case of  synthesized 
sounds, but it can also explain the results for recorded 
sounds. A phase scaling by window could be a way to 
correct this approximation, but it might be complex to 
compute by conserving time scaling.

4 CONCLUSION
In  this  paper,  we  propose  a  method  to  model  a 
dissimilarity  test  by  comparing  the  time-frequency 
representations  of  sounds.  Two  time-frequency 
representations  have  been  tested;  the  time-frequency 
representations and the cochleagram, a perceived energy 
time-frequency representation issued from an auditory 
model.  The latter  enables to emphasize the perceptive 
attributes  in  the  time-frequency  domain. We  have 
applied  our  method  to  interior  car  sounds,  as  their 
signals  structure  is  suitable  for  this  time-frequency 
comparison and because it’s a complex and rich signal 
whose perceptive description depends on the dynamic 
variations  of  the  sound.  We  show  that  auditory 
representation  improves  the  computation  of 
dissimilarity  tests  for  different  kinds of  tested sounds 
(synthesized  or  recorded  sounds).  Progress  on 
roughness  characterization  will  certainly  improve  this 
dissimilarity calculus test  and an application to  music 
instruments, which perspective spaces are well known 
[23] will enable a better calibration of this method.
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